Mathematical simulation of a tethered satellite system motion with an inflatable spherical balloon during a spacecraft orbit injection
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 63-74 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper deals with a problem of spacecraft delivery into orbit using a tethered satellite system. Tethered system consists of satellite, elastic tether, and docking module equipped with an inflatable balloon. Spacecraft placed in an orbit makes a soft docking. The balloon is inflated after docking and the system transfers into rotation mode due to aerodynamic forces. When a half-turn has been made, the spacecraft is separated from the docking module. The objective of this paper is to study an applicability of the orbital injection scheme described. The mathematical model is developed using Lagrange equations of the second kind. It takes into account the effect of aerodynamic forces on the inflatable balloon. The numerical simulation of the system motion is implemented. A comparison of mechanical system motion with and without inflatable balloon is performed. The spacecraft orbit parameters are evaluated for different balloon radius. The estimation of unspent jet propellant is exposed.
Keywords: tethered satellite system, payload injection, phase-plane plot, numerical simulation.
Mots-clés : Lagrange equations
@article{VTGU_2018_52_a6,
     author = {A. S. Ledkov and R. G. Sobolev},
     title = {Mathematical simulation of a tethered satellite system motion with an inflatable spherical balloon during a spacecraft orbit injection},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {63--74},
     year = {2018},
     number = {52},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_52_a6/}
}
TY  - JOUR
AU  - A. S. Ledkov
AU  - R. G. Sobolev
TI  - Mathematical simulation of a tethered satellite system motion with an inflatable spherical balloon during a spacecraft orbit injection
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 63
EP  - 74
IS  - 52
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_52_a6/
LA  - ru
ID  - VTGU_2018_52_a6
ER  - 
%0 Journal Article
%A A. S. Ledkov
%A R. G. Sobolev
%T Mathematical simulation of a tethered satellite system motion with an inflatable spherical balloon during a spacecraft orbit injection
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 63-74
%N 52
%U http://geodesic.mathdoc.fr/item/VTGU_2018_52_a6/
%G ru
%F VTGU_2018_52_a6
A. S. Ledkov; R. G. Sobolev. Mathematical simulation of a tethered satellite system motion with an inflatable spherical balloon during a spacecraft orbit injection. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 63-74. http://geodesic.mathdoc.fr/item/VTGU_2018_52_a6/

[1] HAAS Orbital Rocket Launcher (Brochure), ARCASPACE, 2012 | DOI

[2] Jones R. M., “Electromagnetically launched microspacecraft for space science missions”, J. Spacecraft and Rockets, 26:5 (1989), 338–342 | DOI

[3] Krier H., Glumb R. J., “Concepts and status of laser-supported rocket propulsion”, J. Spacecraft and Rockets, 21:1 (1984), 70–79 | DOI

[4] Edwards B. C., “Design and deployment of a space elevator”, Acta Astronautica, 47:10 (2000), 735–744 | DOI

[5] Ledkov A. S., Pikalev R. S., “Study of influence of climber motion on the space elevator dynamics”, Science and Education: Scientific Publication, 2014, no. 5, 206–216 | DOI

[6] Pugno N. M., “On the strength of the carbon nanotube-based space elevator cable: from nanomechanics to megamechanics”, J. Physics: Condensed Matter, 18:33 (2006), S1971 | DOI

[7] Bangham M. E., Lorenzini E. C., Vestal L., Tether Transport System Study, TP-1998-206959, NASA, 1998

[8] Carroll J. A., Preliminary Design of alk m/sec Tether transport facility, Final Report on NASA contract NASW-4461, No 78, 1991

[9] Lorenzini E. C. et al., “Mission analysis of spinning systems for transfers from low orbits to geostationary”, J. Spacecraft and Rockets, 37:2 (2000), 165–172 | DOI

[10] Hoyt R. P., 33rd Joint Propulsion Conference, AIAA Paper 97-2794, 1997

[11] Hoyt R. P., Forward R. L., Tether Transport from Sub-Earth-Orbit to the Moon ...And Back!, 1997 International Space Development Conference (Orlando FL, 1997)

[12] Hoyt R. P., Uphoff C., “Cislunar tether transport system”, J. Spacecraft and Rockets, 37:2 (2000), 177–186 | DOI

[13] Hoyt R. P., Forward R. L., Nordley G. D., Uphoff C. W., “Rapid Interplanetary Tether Transport”, 50th Int. Astronautical Congress (Netherlands, Amsterdam, Oct. 1999), Amsterdam, 1999, 1999

[14] Nordley G. D., Forward R. L., “Mars-earth rapid interplanetary tether transport system: I. Initial feasibility analysis”, J. Propulsion and Power, 17:3 (2001), 499–507 | DOI

[15] Marshall L., Finkenor M., “Space tethers”, Aerospace America, 2004, no. 12, 92

[16] Aslanov V. S., Ledkov A. S., Stratilatov N. R., “Effect of the tether system delivering freights to the Earth on the rotary motion of spacecraft”, All-Russian Scientific-Technical Journal “Polyot”, 2009, no. 1, 54–60

[17] Shcherbakov V. I., “Analytical model of a tethered satellite system maneuver for the descent of a small space vehicle from the orbit”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4-2, 367–368 | Zbl

[18] Dong Z., Zabolotnov Y. M., Wang C., “Analysis of deployment dynamics of a space tether system with an atmospheric sounder”, Academic Journal “Izvestia of Samara Scientific Center of the Russian Academy of Sciences”, 18:4-4 (2016), 726–732

[19] Ledkov A. S., Zharinov M. K., “Application of inflatable balloon in the problem of payload orbit injection by tether satellite system”, Internet-jurnal Naukovedenie, 2014, no. 4 (23), 1–18

[20] Markeev A. P., Theoretical mechanics, a textbook, Nauka, M., 1990

[21] Krasnov N. F., Aerodynamics, Visshaya shkola, M., 1976

[22] Shakhov E. M., “Oscillations of the satellite-sounder towed on an inextensible cord in heterogeneous atmosphere”, Journal of Applied Mathematics and Mechanics, 52:4 (1988), 567 | Zbl

[23] Sorensen K., Momentum eXchange Electrodynamic Reboost (MXER) Tether Technology Assessment, Group Final Report, 4, NASA/MSFC In-Space Propulsion Technology Office, Huntsville, AL, 2003

[24] Okhotsimskiy D. E., Sikhuralidze Yu. G., Fundamentals of mechanics and space flight, a textbook, Nauka, M., 1990

[25] Balk M. B., Principles of space flight dynamics, Nauka, M., 1965