Non-isothermal steady flow of power-law fluid in a planar/axismetric channel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 41-52 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The results of research on a one-dimensional steady flow of power-law fluid in the planar channel/circular pipe with allowance for viscous dissipation and temperature dependence of consistency factor defined by exponential law are shown. The flow is described by the motion and heat-transfer equations. The constant temperature and no-slip condition are set on the solid walls. The numerical solutions of formulated problems are obtained using the finite-difference method. The effect of medium rheology and dissipative heating on the flow pattern is parametrically investigated. Typical distributions of velocity, temperature, viscosity, and dissipative function in the channel/pipe cross-sections at various governing parameters are obtained. The algorithm defining critical values of parameter in the problem, which separate domains of existence and non-existence of stable stationary solution, is numerically implemented. Exceeding the obtained critical values leads to a hydrodynamic thermal explosion. When the rate of heat generation due to mechanical energy dissipation is higher than that of heat loss through the walls, the unlimited increase in the temperature occurs. The dependencies of parameter on the power-law index defining a stable stationary solution domain are plotted. The calculated results are in a good agreement with analytical solution.
Keywords: power law fluid, steady flow, finite-difference method
Mots-clés : viscous dissipation, hydrodynamic thermal explosion.
@article{VTGU_2018_52_a4,
     author = {E. I. Borzenko and G. R. Shrager},
     title = {Non-isothermal steady flow of power-law fluid in a planar/axismetric channel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {41--52},
     year = {2018},
     number = {52},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_52_a4/}
}
TY  - JOUR
AU  - E. I. Borzenko
AU  - G. R. Shrager
TI  - Non-isothermal steady flow of power-law fluid in a planar/axismetric channel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 41
EP  - 52
IS  - 52
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_52_a4/
LA  - ru
ID  - VTGU_2018_52_a4
ER  - 
%0 Journal Article
%A E. I. Borzenko
%A G. R. Shrager
%T Non-isothermal steady flow of power-law fluid in a planar/axismetric channel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 41-52
%N 52
%U http://geodesic.mathdoc.fr/item/VTGU_2018_52_a4/
%G ru
%F VTGU_2018_52_a4
E. I. Borzenko; G. R. Shrager. Non-isothermal steady flow of power-law fluid in a planar/axismetric channel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 41-52. http://geodesic.mathdoc.fr/item/VTGU_2018_52_a4/

[1] Regirer S. A., “Some thermohydrodynamic problems on a one-dimensional steady flow of viscous dropping liquid”, Journal of Applied Mathematics and Mechanics, 21:3 (1957), 424–430

[2] Kaganov S. A., “On a steady laminar flow of incompressible fluid in plane channel and round cylindrical tube with allowance for heat of friction and temperature dependence of viscosity”, Journal of Applied Mechanics and Technical Physics, 1962, no. 3, 96–99

[3] Kearsley E. A., “The viscous heating correction for viscometer flows”, Trans. Soc. Rheol., 1962, no. 6, 253–261 | DOI

[4] Martin B., “Some analytical solutions for viscometric flows of power-law fluids with heat generation and temperature dependent viscosity”, Ind. J. Non-Linear Mech., 2:4 (1967), 285–301 | DOI | Zbl

[5] Bostandzhiyan S. A., Merzhanov A. G., Khudyaev S. I., “On the hydrodynamic thermal explosion”, Dokl. Akad. Nauk SSSR, 163:1 (1965), 133–136

[6] Bostandzhiyan S. A., Chernyaeva S. M., “On the hydrodynamic thermal explosion in a non-Newtonian fluid flow”, Dokl. Akad. Nauk SSSR, 170:2 (1966), 301–304 | Zbl

[7] Petukhov B. S., Heat transfer and resistance in a laminar fluid flow in the pipes, Energiya, M., 1967

[8] Froyshteter G. B., Danilevich S. Yu., Radionova N. V., Flow and heat transfer of non-Newtonian fluids in the pipes, Naukova dumka, Kiev, 1990

[9] Kutepov A. M., Polyanin A. D., Zapryanov Z. D. et al., Chemical Hydrodynamics, Handbook, Byuro Kvantum, M., 1996

[10] Hudyaev S. I., Threshold phenomena in nonlinear equations, Fizmatlit, M., 2003

[11] Bognar G., Kovacs J., “Non-isothermal steady flow of power-law fluids between parallel plates”, International Journal of Mathematical Models and Methods in Applied Sciences, 6:1 (2012), 122–129

[12] Baptista A., Alves M. A., Coelho P. M., “Heat Transfer in Fully Developed Laminar Flow of Power Law Fluids”, J. of Heat Transfer, 136:4 (2014), 1–8 | DOI

[13] Borzenko E. I., Shrager G. R., “Effect of viscous dissipation on temperature, viscosity, and flow parameters while filling a channel”, Thermophysics and Aeromechanics, 21:2 (2014), 211–221 | DOI

[14] Borzenko E. I., Frolov O. Yu., Shrager G. R., “Fountain nonisothermal flow of a viscous liquid during the filling of a circular tube”, Theor. Found. Chem. Eng., 48:6 (2014), 824831 | DOI

[15] Borzenko E., Ryltsev I., Frolov O., “Shrager G. Nonisothermal filling of a planar channel with a power-law fluid”, J. Physics: Conf. Series, 899 (2017), 1–6 | DOI

[16] Borzenko E. I., Shrager G. R., “Nonisothermal flow of a viscous fluid when filling a plane channel”, Tomsk State University Journal of Mathematics and Mechanics, 2012, no. 2, 80–87

[17] Godunov S. K., Ryabenkii V. S., Difference Schemes, Elsevier Science Ltd., North-Holland, 1987 | MR

[18] Patankar S., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, McGraw-Hill, 1980, 197 pp. | Zbl

[19] Demidovich B. P., Maron I. A., Computational Mathematics, Mir Publishers, M., 1981

[20] Frank-Kamenetskii D. A., Diffusion and Heat Exchange in Chemical Kinetics, Princeton University Press, Princeton, 2015