On an extremal problem for nonoverlapping domains
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 13-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of finding the range of the functional $I=J(f(z_0), \overline{f(z_0)}, F(\zeta_0), \overline{F(\zeta_0)})$ defined on the class $\mathfrak{M}$ of functions pairs $(f(z), F(\zeta))$ that are univalent in the system of the disk and the interior of the disk, using the method of internal variations. We establish that the range of this functional is bounded by the curve whose equation is written in terms of elliptic integrals, depending on the parameters of the functional $I$.
Keywords: Method of internal variations, Univalent function, Nonoverlapping domains, Functional range, Elliptic integrals.
@article{VTGU_2018_52_a1,
     author = {E. A. Pchelintsev and V. A. Pchelintsev},
     title = {On an extremal problem for nonoverlapping domains},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {13--24},
     year = {2018},
     number = {52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_52_a1/}
}
TY  - JOUR
AU  - E. A. Pchelintsev
AU  - V. A. Pchelintsev
TI  - On an extremal problem for nonoverlapping domains
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 13
EP  - 24
IS  - 52
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_52_a1/
LA  - en
ID  - VTGU_2018_52_a1
ER  - 
%0 Journal Article
%A E. A. Pchelintsev
%A V. A. Pchelintsev
%T On an extremal problem for nonoverlapping domains
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 13-24
%N 52
%U http://geodesic.mathdoc.fr/item/VTGU_2018_52_a1/
%G en
%F VTGU_2018_52_a1
E. A. Pchelintsev; V. A. Pchelintsev. On an extremal problem for nonoverlapping domains. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 13-24. http://geodesic.mathdoc.fr/item/VTGU_2018_52_a1/

[1] A.M.S. Translations, 122 (1984), 1–63

[2] Goluzin G. M., Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence., 1969 | MR | Zbl

[3] Jenkins J. A., Univalent Functions and Conformal Mapping, Springer Verlag, Berlin–Gottingen–Heidelberg, 1958 | MR | Zbl

[4] Nehari Z., “Some inequalities in the theory of functions”, Trans. Amer. Math. Soc., 75:2 (1953), 256–286 | DOI | MR | Zbl

[5] Lebedev N. A., “On the range of the restriction of a functional on nonoverlapping domains”, Dokl. Akad. Nauk SSSR, 115:6 (1957), 1070–1073 | MR | Zbl

[6] Duren P. L., Schiffer M. M., “Conformal Mappings onto Nonoverlapping Regions”, Complex Analysis, eds. Hersch J., Huber A., Birkhauser, Basel, 1988, 27–39 | DOI | MR

[7] Kuhnau R., “Uber zwei Klassen schlichter konformer”, Abbildungen Math. Nachr., 49:1–6 (1971), 173–185 | DOI | MR | Zbl

[8] Bakhtin A. K., Bakhtina G. P., Zelinskii Yu. B., “Topological-algebraic structures and geometric methods in complex analysis”, Proceedings of the Institute of Mathematics of NAS of Ukraine, 73, 2008, 308 (in Russian) | MR | Zbl

[9] Andreev V. A., “Some problems on nonoverlapping domains”, Siberian Math. J., 17:3 (1976), 373–386 | DOI

[10] Pchelintsev V. A., “On a problem of nonoverlapping domains”, Siberian Math. J., 53:6 (2012), 1119–1127 | DOI | MR | Zbl

[11] Alexandrov I. A., Parametric continuations in the theory of univalent functions, Nauka, M., 1976 | MR

[12] Schaeffer A. C., Spencer D. C., Coefficient regions for schlicht functions, Amer. Math. Soc. Coll. Publ., 35, New York, 1950 | MR | Zbl

[13] Ulina G. V., “On the range of some functional systems in classes of univalent functions”, Vestnik Leningrad. Univ. Mathematics, Mechanics and Astronomy, 1960, no. 1(1), 35–54 | MR

[14] Lebedev N. A., “The majorant domain for the expression $I=\ln\{z^\lambda[f'(z)]^{1-\lambda}/[f(z)]^\lambda\}$ in the class $S$”, Vestnik Leningrad. Univ. Mathematics, physycs and chemistry, 1955, no. 3(8), 29–41 | MR | Zbl

[15] Schiffer M., “Variation of the Green function and theory of the p-valued functions”, Amer. J. Math., 65 (1943), 341–360 | DOI | MR | Zbl

[16] Pchelintsev V. A., Pchelintsev E. A., “On the range of one complexvalued functional”, Siberian Math. J., 56:5 (2015), 922–928 | DOI | MR | Zbl

[17] Golubev V. V., Lectures on the Analytic Theory of Differential Equations, GITTL, M.–L., 1950 | MR

[18] Gradshtein I. S., Ryzhik I. M., Tables of Integrals, Sums, Series and Product, Academic Press, Boston, 1994 | MR