Rank of formal matrix. System of formal linear equations. Zero divisors
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 5-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we present the notion of the formal rank, i.e., the rank of a formal matrix over an arbitrary commutative ring, and some its general properties. Next, we introduce the notion of systems of formal linear equations and give necessary and sufficient conditions for the existence of a solution of homogenous systems of formal linear equations. In Section 2, we show that Cramer's rule is still valid for systems of formal linear equations. Finally, in Section 3, we establish the condition under which a formal matrix is a left or right zero divisor.
Keywords: ring, rank of formal matrix, system of formal linear equations.
Mots-clés : formal matrix
@article{VTGU_2018_52_a0,
     author = {T. D. Norbosambuev},
     title = {Rank of formal matrix. {System} of formal linear equations. {Zero} divisors},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--12},
     year = {2018},
     number = {52},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2018_52_a0/}
}
TY  - JOUR
AU  - T. D. Norbosambuev
TI  - Rank of formal matrix. System of formal linear equations. Zero divisors
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2018
SP  - 5
EP  - 12
IS  - 52
UR  - http://geodesic.mathdoc.fr/item/VTGU_2018_52_a0/
LA  - ru
ID  - VTGU_2018_52_a0
ER  - 
%0 Journal Article
%A T. D. Norbosambuev
%T Rank of formal matrix. System of formal linear equations. Zero divisors
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2018
%P 5-12
%N 52
%U http://geodesic.mathdoc.fr/item/VTGU_2018_52_a0/
%G ru
%F VTGU_2018_52_a0
T. D. Norbosambuev. Rank of formal matrix. System of formal linear equations. Zero divisors. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 52 (2018), pp. 5-12. http://geodesic.mathdoc.fr/item/VTGU_2018_52_a0/

[1] Krylov P. A., Tuganbaev A. A., “Formal Matrices and Their Determinants”, J. Math. Sci., 211 (2015), 341 | DOI | MR | Zbl

[2] Krylov P. A., Tuganbaev A. A., “Modules over formal matrix rings”, J. Math. Sci., 171 (2010), 248 | DOI | MR | Zbl

[3] Norbosambuev T. D., “On sums of diagonal and invertible formal matrices”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 4(36), 34–41 | DOI

[4] Norbosambuev T. D., “2-good diagonal formal matrices over the ring of integers”, Proceedings of All-Russia Scientific Youth Conferences “All Faces of Mathematics and Mechanics”, TGU Publ., Tomsk, 2016, 6–13

[5] Brown W. C., Matrices over commutative rings, Marcel Dekker Inc., New York, 1993, 294 pp. | MR | Zbl

[6] Camion P., Levy L. S., Mann H. B., “Linear equations over commutative ring”, J. Algebra, 18 (1971), 432–436 | DOI | MR

[7] McCoy N., Rings and Ideals, Carus Math. Monogr., 8, Mathematical Association of America, 1948, 216 pp. | MR | Zbl