Numerical analysis of the kinetics of chemical reactions in an argon-silane plasma of the glow discharge
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 79-89 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The chemical kinetics of neutral components in an argon-silane plasma of the glow discharge is considered. The modeling of plasma chemical composition is implemented in $\mathrm{2D}$-cylinder geometry based on numerical solution of the set of coupled diffusion equations. The model includes $20$ neutral species and about $60$ chemical reactions. The coefficients of electron collision rate are computed using numerical solution of two-term approximation of the Boltzmann equation for electrons. The electron density is set as an input parameter with the value of $10^8$ cm$^{-3}$. A contribution of the principal chemical reactions on the entire source and sink of different components is discussed. In modeling of the chemical kinetics of film-forming radicals, the role of higher silane radicals Si$_n$H$_x$ ($n\geqslant3$) is not significant up to $10^{-2}$ s. Consequently, if the residence time of feed gas in the reaction chamber is of about milliseconds, the effect of such components and chemical reactions, which produce them, can be neglected in the simulation of silane plasma. Calculation results obtained using the model with the quantity of components reduced to $14$ give almost the same values for silane radical densities. In modeling of plasma chemistry system, an analysis of contribution of the reactions can be used as a tool for reducing preliminary set of species and reactions to the minimal set, which is sufficient for the computations in a certain time interval.
Keywords: silane plasma, transport processes in a chemical-active plasma
Mots-clés : amorphous silicon.
@article{VTGU_2017_50_a6,
     author = {A. A. Lyakhov and V. I. Strunin},
     title = {Numerical analysis of the kinetics of chemical reactions in an argon-silane plasma of the glow discharge},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {79--89},
     year = {2017},
     number = {50},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a6/}
}
TY  - JOUR
AU  - A. A. Lyakhov
AU  - V. I. Strunin
TI  - Numerical analysis of the kinetics of chemical reactions in an argon-silane plasma of the glow discharge
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 79
EP  - 89
IS  - 50
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a6/
LA  - ru
ID  - VTGU_2017_50_a6
ER  - 
%0 Journal Article
%A A. A. Lyakhov
%A V. I. Strunin
%T Numerical analysis of the kinetics of chemical reactions in an argon-silane plasma of the glow discharge
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 79-89
%N 50
%U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a6/
%G ru
%F VTGU_2017_50_a6
A. A. Lyakhov; V. I. Strunin. Numerical analysis of the kinetics of chemical reactions in an argon-silane plasma of the glow discharge. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 79-89. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a6/

[1] Graves D. B., Kushner M. J., “Influence of modeling and simulation on the maturation of plasma technology: feature evolution and reactor design”, J. Vac. Sci. Technol. A, 21 (2003), 152–156 | DOI

[2] Dijk van J., Bogaerts A., “Plasma modelling and numerical simulation”, J. Phys. D: Appl. Phys., 42 (2009), 190301 | DOI

[3] Gorbachev Yu. E., Zatevakhin M. A., Kaganovich I. D., “Simulation of the growth of hydrogenated amorphous silicon films from an rf plasma”, Technical Physics, 41:12 (1996), 1247–1258

[4] Kushner M. J., “A model for discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon”, J. Appl. Phys., 63 (1988), 2532–2551 | DOI

[5] Gorbachev Yu. E., Zatevakhin M. A., Krzhizhanovskaya V. V. et al., “Special features of the growth of hydrogenated amorphous silicon in PECVD reactors”, Technical Physics, 45:8 (2000), 1032–1041 | DOI

[6] Strunin V. I., Lyakhov A. A., Khudaybergenov G. Zh. et al., “Numerical simulation of silane decomposition in an RF plasma”, Technical Physics, 47:6 (2002), 760–766 | DOI

[7] Perrin J., Leroy O., Bordage M. C., “Cross-sections, rate constants and transport coefficients in silane plasma chemistry”, Contrib. Plasma Phys., 36 (1996), 3–49 | DOI

[8] Leroy O., Gousset G.., Alves L. L. et al., “Two-dimensional modeling of SiH4-H2 radiofrequency discharges for a-Si:H deposition”, Plasma Sour. Sci. Tech., 7 (1998), 348–358 | DOI

[9] Baranova L. V., Strunin V. I., Khudaybergenov G. Zh. et al., Method for depositing amorphous silicon films and the device for its implementation, RF Patent 2188878