Keywords: integral overdetermination condition, differential-difference problem
@article{VTGU_2017_50_a5,
author = {Kh. M. Gamzaev},
title = {A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {67--78},
year = {2017},
number = {50},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a5/}
}
TY - JOUR AU - Kh. M. Gamzaev TI - A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 67 EP - 78 IS - 50 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a5/ LA - ru ID - VTGU_2017_50_a5 ER -
%0 Journal Article %A Kh. M. Gamzaev %T A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 67-78 %N 50 %U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a5/ %G ru %F VTGU_2017_50_a5
Kh. M. Gamzaev. A numerical method for solving the coefficient inverse problem for diffusion-convection-reaction equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 67-78. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a5/
[1] Anderson D., Tannehill K., Pletcher R., Computational Fluid Mechanics and Heat Transfer, New York, 1984 | MR
[2] Whitham G. B., Linear and Nonlinear Waves, John Wiley Sons Inc., 1974 | MR | Zbl
[3] Paskonov V. M., Polezhaev V. I., Chudov L. A., Numerical modeling of heat and mass transfer processes, Nauka, M., 1984 | MR
[4] Roache P. J., Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, 1976 | MR
[5] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Extreme methods for solving ill-posed problems, Nauka, M., 1988
[6] Samarskiy A. A., Vabishchevich P. N., Numerical methods for solving inverse problems of mathematical physics, Publishing house LCI, M., 2009
[7] Kabanikhin S. I., Inverse and ill-posed problems, Siberian Scientific publishers, Novosibirsk, 2009
[8] Ivanchov N. I., Pabyrivska N. V., “On determination of two time-dependent coefficients in a parabolic equation”, Siberian Mathematical Journal, 43:2 (2002), 323–329 | DOI | MR | Zbl
[9] Kamynin V. L., “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Mathematical Notes, 94:2 (2013), 205–213 | DOI | DOI | MR | Zbl
[10] Kostin A. B., “Recovery of the coefficient of ut in the heat equation from a condition of nonlocal observation in time”, Computational Mathematics and Mathematical Physics, 55:1 (2015), 85–100 | DOI | DOI | MR | Zbl
[11] Kozhanov A. I., “Parabolic equations with unknown time-dependent coefficients”, Computational Mathematics and Mathematical Physics, 57:6 (2017), 956–966 | DOI | MR | Zbl
[12] Liu Yang, Jian-Ning Yu, Zui-Cha Deng, “An inverse problem of identifying the coefficient of parabolic equation”, Applied Mathematical Modelling, 32:10 (2008), 1984–1995 | DOI | MR | Zbl
[13] N. B. Kerimov, M. I. Ismailov, “An inverse coefficient problem for the heat equation in the case of nonlocal boundary conditions”, J. Mathematical Analysis and Applications, 396:2 (2012), 546–554 | DOI | MR | Zbl
[14] Engl H. W., Zou J., “A new approach to convergence rates analysis of Tikhonov regularization for parameter identification in heat conduction”, Inverse Problems, 16 (2000), 1907–1923 | DOI | MR | Zbl
[15] Deng Z. C., Qian K., Rao X. B., Yang L., Luo G. W., “An inverse problem of identifying the source coefficient in a degenerate heat equation”, Inverse Problems in Science and Engineering, 23:3 (2015), 498–517 | DOI | MR | Zbl
[16] Dehghan M., Tatari M., “Determination of a control parameter in a one-dimensional parabolic equation using the method of radial basis functions”, Math. Comput. Modell., 44 (2006), 1160–1168 | DOI | MR | Zbl
[17] Vabishchevich P. N., Vasil'eva M. V., “Explicit-implicit schemes for convection-diffusion-reaction problems”, Numerical Analysis and Applications, 5:4 (2012), 297–306 | DOI | MR | Zbl