The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 45-56
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Applying a method of complex analysis (based upon analytic functions), R. P. Gilbert in 1969 constructed an integral representation of solutions of the generalized bi-axially symmetric Helmholtz equation. Fundamental solutions of this equation were constructed recently. In fact, when the spectral parameter is zero, fundamental solutions of the generalized bi-axially symmetric Helmholtz equation can be expressed in terms of Appell’s hypergeometric function of two variables of the second kind. All the fundamental solutions of the generalized bi-axially symmetric Helmholtz equation are known, and only for the first one the theory of potential was constructed. In this paper, we aim at constructing a theory of double-layer potentials corresponding to the fourth fundamental solution. Using some properties of Appell’s hypergeometric functions of two variables, we prove limiting theorems and derive integral equations containing double-layer potential densities in the kernel.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
generalized bi-axially symmetric Helmholtz equation; Green’s formula; fundamental solution; fourth double-layer potential; Appell’s hypergeometric functions of two variables; integral equations with double-layer potential density.
                    
                  
                
                
                @article{VTGU_2017_50_a3,
     author = {T. G. Ehrgashev},
     title = {The fourth double-layer potential for a generalized bi-axially symmetric {Helmholtz} equation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {45--56},
     publisher = {mathdoc},
     number = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/}
}
                      
                      
                    TY - JOUR AU - T. G. Ehrgashev TI - The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 45 EP - 56 IS - 50 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/ LA - ru ID - VTGU_2017_50_a3 ER -
%0 Journal Article %A T. G. Ehrgashev %T The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 45-56 %N 50 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/ %G ru %F VTGU_2017_50_a3
T. G. Ehrgashev. The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 45-56. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/
