@article{VTGU_2017_50_a3,
author = {T. G. Ehrgashev},
title = {The fourth double-layer potential for a generalized bi-axially symmetric {Helmholtz} equation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {45--56},
year = {2017},
number = {50},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/}
}
TY - JOUR AU - T. G. Ehrgashev TI - The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 45 EP - 56 IS - 50 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/ LA - ru ID - VTGU_2017_50_a3 ER -
%0 Journal Article %A T. G. Ehrgashev %T The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 45-56 %N 50 %U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/ %G ru %F VTGU_2017_50_a3
T. G. Ehrgashev. The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 45-56. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/
[1] Miranda C., Partial Differential Equations of Elliptic Type, Translated from the Italian edition by Z. C. Motteler, Ergebnisse der Mathematik und ihrer Grenzgebiete, 2, Second Revised Edition, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR
[2] Gunter N. M., Potential Theory and Its Applications to Basic Problems of Mathematical Physics, Translated from the Russian edition by J. R. Schulenberger, Frederick Ungar Publishing Company, New York, 1967 | MR | Zbl
[3] Gilbert R. P., Theoretic Methods in Partial Differential Equations. Mathematics in Science and Engineering, A Series of Monographs and Textbooks, 54, Academic Press, New York–London, 1969, 308 pp. | MR
[4] Hasanov A., “Fundamental solutions of generalized bi-axially symmetric Helmholtz equation”, Complex variables and Elliptic Equations, 52 (2007), 673–683 | DOI | MR | Zbl
[5] Appell P., Kampe de Feriet J., Fonctions Hypergeometriques et Hyperspheriques: Polynomes d'Hermite, Gauthier-Villars, Paris, 1926, 440 pp. | Zbl
[6] Erdelyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher Transcendental Functions, v. I, McGraw-Hill Book Company, New York–Toronto–London, 1953
[7] Srivastava H. M., Karlsson P. W., Multipl. Gaussian Hypergeometric Series, Halsted Press, Ellis Horwood Limited, Chicherster; John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1985, 386 pp. | MR
[8] Smirnov M. M., Degenerate elliptic and hyperbolic equations, Nauka, M., 1966
[9] Smirnov M. M., Equations of mixed type, Vysshaya Shkola, M., 1985
[10] Srivastava H. M., Hasanov A., Choi J., “Double-Layer Potentials for a Generalized Bi-Axially Symmetric Helmholtz Equation”, Sohag J. Math., 2:1 (2015), 1–10
[11] Burchnall J. L., Chaundy T. W., “Expansions of Appell's double hypergeometric functions”, Quart. J. Math. Oxford Ser., 11 (1940), 249–270 | DOI | MR