The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 45-56

Voir la notice de l'article provenant de la source Math-Net.Ru

Applying a method of complex analysis (based upon analytic functions), R. P. Gilbert in 1969 constructed an integral representation of solutions of the generalized bi-axially symmetric Helmholtz equation. Fundamental solutions of this equation were constructed recently. In fact, when the spectral parameter is zero, fundamental solutions of the generalized bi-axially symmetric Helmholtz equation can be expressed in terms of Appell’s hypergeometric function of two variables of the second kind. All the fundamental solutions of the generalized bi-axially symmetric Helmholtz equation are known, and only for the first one the theory of potential was constructed. In this paper, we aim at constructing a theory of double-layer potentials corresponding to the fourth fundamental solution. Using some properties of Appell’s hypergeometric functions of two variables, we prove limiting theorems and derive integral equations containing double-layer potential densities in the kernel.
Keywords: generalized bi-axially symmetric Helmholtz equation; Green’s formula; fundamental solution; fourth double-layer potential; Appell’s hypergeometric functions of two variables; integral equations with double-layer potential density.
@article{VTGU_2017_50_a3,
     author = {T. G. Ehrgashev},
     title = {The fourth double-layer potential for a generalized bi-axially symmetric {Helmholtz} equation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {45--56},
     publisher = {mathdoc},
     number = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/}
}
TY  - JOUR
AU  - T. G. Ehrgashev
TI  - The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 45
EP  - 56
IS  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/
LA  - ru
ID  - VTGU_2017_50_a3
ER  - 
%0 Journal Article
%A T. G. Ehrgashev
%T The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 45-56
%N 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/
%G ru
%F VTGU_2017_50_a3
T. G. Ehrgashev. The fourth double-layer potential for a generalized bi-axially symmetric Helmholtz equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 45-56. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a3/