Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 30-44 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let a controlled process be described in the region $\mathcal{Q}_T=\{(x,t): 0 by the following boundary-value problem for a linear parabolic equation with an integral boundary condition: \begin{gather*} \frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left(k(x,t)\frac{\partial u}{\partial x}\right)+q(x,t)u=f(x,t),\ (x,t)\in\mathcal{Q}_T,\\ u(x,0)=\varphi(x), \ 0\leqslant x\leqslant\ell, \\ \frac{\partial u}{\partial x}(0, t)=0,\ 0<t\leqslant T,\\ k(\ell, t)\frac{\partial u}{\partial x}(\ell, t)=\int_0^{\ell} H(x)\frac{\partial u}{\partial x}(x, t)dx+g(t), \ 0<t\leqslant T, \end{gather*} where $\varphi(x)\in W_2^1(0, l)$, $f(x, t)\in L_2(\mathcal{Q}_T)$, $g(t)\in W_2^1(0, T)$, $H(x)\in \mathring{W}_2^1(0,l)$ are given functions, $k(x, t)$, $q(x, t)$ — are control functions, and $u=u(x,t)=u(x,t,\nu)$ — is solution of the boundary value problem, i.e. the process state corresponding to the control $\upsilon$. We introduce the set of admissible controls \begin{gather*} V=\{\upsilon=(k(x,t), q(x,t))\in H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T): 0<\nu\leqslant k(x,t)\leqslant\mu,\\ \left| \frac{\partial k(x,t)}{\partial x}\right|\leqslant \mu_1, \left| \frac{\partial k(x,t)}{\partial t}\right|\leqslant\mu_2, |q(x, t)|\leqslant\mu_3\text{ a.e. on }\mathcal{Q}_T\}, \end{gather*} where $\nu, \mu, \mu_1, \mu_2, \mu_3>0$ — are given numbers. We define the target functional $$ J(\upsilon)=\int_0^T|u(x, T;\upsilon)-u_T(x)|^2dx, $$ where $u_T(x)\in W_2^1(0, l)$ — the given function. In the present work, the optimal control problem for a parabolic equation with an integral boundary condition and control coefficients is considered. Estimates of the accuracy of the difference approximations by state and function are established. The process of A. N. Tikhonov’s regularization of the approximations is carried out.
Keywords: optimal control, integral boundary condition, difference approximation.
Mots-clés : parabolic equation
@article{VTGU_2017_50_a2,
     author = {R. K. Tagiev and V. M. Gabibov},
     title = {Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {30--44},
     year = {2017},
     number = {50},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/}
}
TY  - JOUR
AU  - R. K. Tagiev
AU  - V. M. Gabibov
TI  - Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 30
EP  - 44
IS  - 50
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/
LA  - ru
ID  - VTGU_2017_50_a2
ER  - 
%0 Journal Article
%A R. K. Tagiev
%A V. M. Gabibov
%T Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 30-44
%N 50
%U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/
%G ru
%F VTGU_2017_50_a2
R. K. Tagiev; V. M. Gabibov. Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 30-44. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/

[1] Egorov A. I., Optimum control of thermal and diffusion processes, Nauka, M., 1978

[2] Vasil'ev F. P., Methods for solving extreme problems, Nauka, M., 1981

[3] Samarsky A. A., “On some problems of the theory of differential equations”, Diff. equation, 16:11 (1980), 1925–1935

[4] Nakhushev A. Z., Equations of mathematical biology, Vysshaya shkola, M., 1995

[5] Ivanchev N. I., “Boundary value problems for a parabolic equation with integral conditions”, Diff. equation, 40:4 (2004), 547–564 | Zbl

[6] Kozhanov A. N., “On solvability of a boundary value problem with a nonlocal boundary condition for linear parabolic equations”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki – J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 30 (2004), 63–69 | DOI

[7] Danilkina O. Yu., “On a nonlocal problem for the heat conduction equation with an integral condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki – J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 2007, no. 1(14), 5–9 | DOI

[8] Tagiev R. K., Gabibov V. M., “On an optimal control problem for the heat equation with an integral boundary condition”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki – J. Samara State Tech. Univ., Ser. Phys. Math. Sci., 20:1 (2016), 54–64 | DOI

[9] Tagiev R. K., Gashimov S. A., Gabibov V. M., “On a problem of optimal control for a parabolic equation with an integral condition and with controls in the coefficients”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 3(41), 31–41 | DOI

[10] Lubyshev F. V., “Approximation and regularization of problems of the optimal control of the coefficients of parabolic equations”, Comput. Math. Math. Phys., 33:8 (1993), 1027–1042 | MR | Zbl

[11] Lubyshev F. V., “Difference approximations and regularization of optimal control problems for parabolic equations with controls in the coefficients”, Comput. Math. Math. Phys., 35:9 (1995), 1053–1069 | MR | Zbl

[12] Gabibov V. M., “Difference approximation and regularization of the optimal control problem for the heat equation with an integral boundary condition”, Scientific news of the Lenkoran State University. Ser. Matem. and nat. sciences, 2015, 47–62

[13] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973, 408 pp.

[14] Samarsky A. A., Andreev V. B., Difference methods for elliptic equations, Nauka, M., 1976, 325 pp.