Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 30-44
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a controlled process be described in the region $\mathcal{Q}_T=\{(x,t): 0$ by the
following boundary-value problem for a linear parabolic equation with an integral boundary condition:
\begin{gather*}
\frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left(k(x,t)\frac{\partial u}{\partial x}\right)+q(x,t)u=f(x,t),\ (x,t)\in\mathcal{Q}_T,\\
u(x,0)=\varphi(x), \ 0\leqslant x\leqslant\ell, \\
\frac{\partial u}{\partial x}(0, t)=0,\ 0\leqslant T,\\
k(\ell, t)\frac{\partial u}{\partial x}(\ell, t)=\int_0^{\ell} H(x)\frac{\partial u}{\partial x}(x, t)dx+g(t), \ 0\leqslant T,
\end{gather*}
where $\varphi(x)\in W_2^1(0, l)$, $f(x, t)\in L_2(\mathcal{Q}_T)$, $g(t)\in W_2^1(0, T)$, $H(x)\in \mathring{W}_2^1(0,l)$ are given functions,
$k(x, t)$, $q(x, t)$ — are control functions, and $u=u(x,t)=u(x,t,\nu)$ — is solution of the boundary
value problem, i.e. the process state corresponding to the control $\upsilon$.
We introduce the set of admissible controls
\begin{gather*}
V=\{\upsilon=(k(x,t), q(x,t))\in H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T): 0\nu\leqslant k(x,t)\leqslant\mu,\\
\left| \frac{\partial k(x,t)}{\partial x}\right|\leqslant \mu_1, \left| \frac{\partial k(x,t)}{\partial t}\right|\leqslant\mu_2, |q(x, t)|\leqslant\mu_3\text{ a.e. on }\mathcal{Q}_T\},
\end{gather*}
where $\nu, \mu, \mu_1, \mu_2, \mu_3>0$ — are given numbers.
We define the target functional
$$
J(\upsilon)=\int_0^T|u(x, T;\upsilon)-u_T(x)|^2dx,
$$
where $u_T(x)\in W_2^1(0, l)$ — the given function.
In the present work, the optimal control problem for a parabolic equation with an integral
boundary condition and control coefficients is considered. Estimates of the accuracy of the difference
approximations by state and function are established. The process of A. N. Tikhonov’s regularization
of the approximations is carried out.
Keywords:
optimal control, integral boundary condition, difference approximation.
Mots-clés : parabolic equation
Mots-clés : parabolic equation
@article{VTGU_2017_50_a2,
author = {R. K. Tagiev and V. M. Gabibov},
title = {Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {30--44},
publisher = {mathdoc},
number = {50},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/}
}
TY - JOUR AU - R. K. Tagiev AU - V. M. Gabibov TI - Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 30 EP - 44 IS - 50 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/ LA - ru ID - VTGU_2017_50_a2 ER -
%0 Journal Article %A R. K. Tagiev %A V. M. Gabibov %T Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 30-44 %N 50 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/ %G ru %F VTGU_2017_50_a2
R. K. Tagiev; V. M. Gabibov. Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 30-44. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/