Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 30-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a controlled process be described in the region $\mathcal{Q}_T=\{(x,t): 0$ by the following boundary-value problem for a linear parabolic equation with an integral boundary condition: \begin{gather*} \frac{\partial u}{\partial t}-\frac{\partial}{\partial x}\left(k(x,t)\frac{\partial u}{\partial x}\right)+q(x,t)u=f(x,t),\ (x,t)\in\mathcal{Q}_T,\\ u(x,0)=\varphi(x), \ 0\leqslant x\leqslant\ell, \\ \frac{\partial u}{\partial x}(0, t)=0,\ 0\leqslant T,\\ k(\ell, t)\frac{\partial u}{\partial x}(\ell, t)=\int_0^{\ell} H(x)\frac{\partial u}{\partial x}(x, t)dx+g(t), \ 0\leqslant T, \end{gather*} where $\varphi(x)\in W_2^1(0, l)$, $f(x, t)\in L_2(\mathcal{Q}_T)$, $g(t)\in W_2^1(0, T)$, $H(x)\in \mathring{W}_2^1(0,l)$ are given functions, $k(x, t)$, $q(x, t)$ — are control functions, and $u=u(x,t)=u(x,t,\nu)$ — is solution of the boundary value problem, i.e. the process state corresponding to the control $\upsilon$. We introduce the set of admissible controls \begin{gather*} V=\{\upsilon=(k(x,t), q(x,t))\in H=W_2^1(\mathcal{Q}_T)\times L_2(\mathcal{Q}_T): 0\nu\leqslant k(x,t)\leqslant\mu,\\ \left| \frac{\partial k(x,t)}{\partial x}\right|\leqslant \mu_1, \left| \frac{\partial k(x,t)}{\partial t}\right|\leqslant\mu_2, |q(x, t)|\leqslant\mu_3\text{ a.e. on }\mathcal{Q}_T\}, \end{gather*} where $\nu, \mu, \mu_1, \mu_2, \mu_3>0$ — are given numbers. We define the target functional $$ J(\upsilon)=\int_0^T|u(x, T;\upsilon)-u_T(x)|^2dx, $$ where $u_T(x)\in W_2^1(0, l)$ — the given function. In the present work, the optimal control problem for a parabolic equation with an integral boundary condition and control coefficients is considered. Estimates of the accuracy of the difference approximations by state and function are established. The process of A. N. Tikhonov’s regularization of the approximations is carried out.
Keywords: optimal control, integral boundary condition, difference approximation.
Mots-clés : parabolic equation
@article{VTGU_2017_50_a2,
     author = {R. K. Tagiev and V. M. Gabibov},
     title = {Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {30--44},
     publisher = {mathdoc},
     number = {50},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/}
}
TY  - JOUR
AU  - R. K. Tagiev
AU  - V. M. Gabibov
TI  - Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 30
EP  - 44
IS  - 50
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/
LA  - ru
ID  - VTGU_2017_50_a2
ER  - 
%0 Journal Article
%A R. K. Tagiev
%A V. M. Gabibov
%T Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 30-44
%N 50
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/
%G ru
%F VTGU_2017_50_a2
R. K. Tagiev; V. M. Gabibov. Difference approximation and regularization of the optimal control problem for a parabolic equation with an integral condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 50 (2017), pp. 30-44. http://geodesic.mathdoc.fr/item/VTGU_2017_50_a2/