Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 94-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on the interpenetrating continua approach, the numerical solution of the problem of shock wave propagation in a gas suspension containing inert particles of negligible volume fraction is studied. The solution of the governing equations was obtained numerically using the finite volume method with the difference scheme of the first order of accuracy in time and space. The flux values on the faces of the difference cells for the gas are found by van Leer’s method; for the particles, by Kraiko's method. The implicit and explicit implementations for the right-hand side of the governing equations taking into account the interaction of gas and particles are considered in the difference scheme. The dependence of the maximum possible size of the difference grid on the diameter of the particles is obtained to achieve a stable solution using the explicit difference scheme. It is shown that the implicit difference scheme applied for the righthand sides of equations makes it possible to obtain a stable solution on the fixed difference grid in a wide range of particle sizes. The relaxation processes are shown to significantly affect the shock wave structure and the contact discontinuity propagating along the gas suspension with large particles. The dependence of the shock wave width on the particle size is obtained, which is in a good agreement with the analytical estimates.
Keywords: shock wave, width of the shock wave front, difference scheme.
Mots-clés : gas suspension
@article{VTGU_2017_49_a8,
     author = {L. L. Min'kov and N. V. Gol'dina},
     title = {Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {94--104},
     year = {2017},
     number = {49},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/}
}
TY  - JOUR
AU  - L. L. Min'kov
AU  - N. V. Gol'dina
TI  - Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 94
EP  - 104
IS  - 49
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/
LA  - ru
ID  - VTGU_2017_49_a8
ER  - 
%0 Journal Article
%A L. L. Min'kov
%A N. V. Gol'dina
%T Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 94-104
%N 49
%U http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/
%G ru
%F VTGU_2017_49_a8
L. L. Min'kov; N. V. Gol'dina. Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 94-104. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/

[1] Papalexandris M. V., “Numerical simulation of detonations in mixtures of gases and solid particles”, J. Fluid Mech., 507 (2004), 95–142 | DOI | MR | Zbl

[2] Benkiewicz K., Hayashi A. K., “Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement”, Shock Waves, 13 (2003), 385–402 | DOI

[3] Kratova Yu. V., Khmel' T. A., Fedorov A. V., “Axisymmetric expanding heterogeneous detonation in gas suspensions of aluminum particles”, Combustion, Explosion, and Shock Waves, 52:1 (2016), 74–84 | DOI

[4] Khmel' T. A., Fedorov A. V., “Modeling of propagation of shock and detonation waves in dusty media with allowance for particle collisions”, Combustion, Explosion, and Shock Waves, 50:5 (2014), 547–555 | DOI

[5] Dement'ev A. A., Moiseeva K. M., Krainov A. Yu., Paleev D. Yu., “Comparison of the results of modeling the flame propagation in a hybrid gas suspension with experimental data”, Journal of Engineering Physics and Thermophysics, 89:6 (2016), 1514–1521 | DOI

[6] Dement'ev A. A., Krainov A. Yu., “Studying the influence of relative motion of suspended inert particles on the rate of the gas mixture combustion front”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 2(22), 60–66

[7] Vasenin I. M., Kosterenko V. N., Krainov A. Yu., Lukashov O. Yu., Paleev D. Yu., Shrager E. R., “Calculation of the powder inhibitor cloud transport in a mine tunnel behind the shock wave”, Pozharnaya bezopasnost', 2015, no. 4, 101–108

[8] Paleev D. Yu., Lukashov O. Yu., Vasenin I. M., Shrager E. R., Krainov A. Yu., Kosterenko V. N., “Interaction of the methane explosion shock wave with a powder inhibitor cloud”, Naukoyomkie tekhnologii razrabotki i ispl'zovaniya mineral'nykh resursov, 2017, no. 3, 381–384 | Zbl

[9] Fomin P. A., Chen J.-R., “Effect of chemically inert particles on parameters and suppression of detonation in gases”, Combustion, Explosion, and Shock Waves, 45:3 (2009), 303–313 | DOI

[10] Fedorov A. V., Tropin D. A., “Modeling of detonation wave propagation through a cloud of particles in a two-velocity two-temperature formulation”, Combustion, Explosion, and Shock Waves, 49:2 (2013), 178–187 | DOI

[11] Tropin D. A., Fedorov A. V., “Physicomathematical modeling of detonation suppression by inert particles in methane-oxygen and methane-hydrogen-oxygen mixtures”, Combustion, Explosion, and Shock Waves, 50:5 (2014), 542–546 | DOI

[12] Nigmatulin R. I., Dynamics of multiphase media, v. 1, Nauka, M., 1987

[13] Shotorban B., Jacobs G. B., Ortiz O., Truong Q., “An Eulerian model for particles nonisothermally carried by a compressible fluid”, Int. J. Heat and Mass Transfer, 65 (2013), 845–854 | DOI

[14] Sternin L. E., Maslov B. P., Shrayber A. A., Podvysotskiy A. M., Two-phase mono- and polydisperse flows of gas with particles, Mashinostroenie, M., 1980

[15] van Leer B., “Flux-vector splitting for the euler equation”, Lecture Notes in Physics, 170, 1982, 507–512 | DOI

[16] Krayko A. N., “On discontinuity surfaces in a medium devoid of “proper” pressure”, Journal of Applied Mathematics and Mechanics, 43:3 (1979), 539–549 | DOI | MR | MR | Zbl

[17] Sod G. A., “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Computational Physics, 27:1 (1978), 1–31 | DOI | MR | Zbl