Mots-clés : gas suspension
@article{VTGU_2017_49_a8,
author = {L. L. Min'kov and N. V. Gol'dina},
title = {Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {94--104},
year = {2017},
number = {49},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/}
}
TY - JOUR AU - L. L. Min'kov AU - N. V. Gol'dina TI - Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 94 EP - 104 IS - 49 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/ LA - ru ID - VTGU_2017_49_a8 ER -
%0 Journal Article %A L. L. Min'kov %A N. V. Gol'dina %T Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 94-104 %N 49 %U http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/ %G ru %F VTGU_2017_49_a8
L. L. Min'kov; N. V. Gol'dina. Peculiarities of a numerical solution of the problem of shock wave propagation over a gas suspension with small particles. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 94-104. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a8/
[1] Papalexandris M. V., “Numerical simulation of detonations in mixtures of gases and solid particles”, J. Fluid Mech., 507 (2004), 95–142 | DOI | MR | Zbl
[2] Benkiewicz K., Hayashi A. K., “Two-dimensional numerical simulations of multi-headed detonations in oxygen-aluminum mixtures using an adaptive mesh refinement”, Shock Waves, 13 (2003), 385–402 | DOI
[3] Kratova Yu. V., Khmel' T. A., Fedorov A. V., “Axisymmetric expanding heterogeneous detonation in gas suspensions of aluminum particles”, Combustion, Explosion, and Shock Waves, 52:1 (2016), 74–84 | DOI
[4] Khmel' T. A., Fedorov A. V., “Modeling of propagation of shock and detonation waves in dusty media with allowance for particle collisions”, Combustion, Explosion, and Shock Waves, 50:5 (2014), 547–555 | DOI
[5] Dement'ev A. A., Moiseeva K. M., Krainov A. Yu., Paleev D. Yu., “Comparison of the results of modeling the flame propagation in a hybrid gas suspension with experimental data”, Journal of Engineering Physics and Thermophysics, 89:6 (2016), 1514–1521 | DOI
[6] Dement'ev A. A., Krainov A. Yu., “Studying the influence of relative motion of suspended inert particles on the rate of the gas mixture combustion front”, Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 2(22), 60–66
[7] Vasenin I. M., Kosterenko V. N., Krainov A. Yu., Lukashov O. Yu., Paleev D. Yu., Shrager E. R., “Calculation of the powder inhibitor cloud transport in a mine tunnel behind the shock wave”, Pozharnaya bezopasnost', 2015, no. 4, 101–108
[8] Paleev D. Yu., Lukashov O. Yu., Vasenin I. M., Shrager E. R., Krainov A. Yu., Kosterenko V. N., “Interaction of the methane explosion shock wave with a powder inhibitor cloud”, Naukoyomkie tekhnologii razrabotki i ispl'zovaniya mineral'nykh resursov, 2017, no. 3, 381–384 | Zbl
[9] Fomin P. A., Chen J.-R., “Effect of chemically inert particles on parameters and suppression of detonation in gases”, Combustion, Explosion, and Shock Waves, 45:3 (2009), 303–313 | DOI
[10] Fedorov A. V., Tropin D. A., “Modeling of detonation wave propagation through a cloud of particles in a two-velocity two-temperature formulation”, Combustion, Explosion, and Shock Waves, 49:2 (2013), 178–187 | DOI
[11] Tropin D. A., Fedorov A. V., “Physicomathematical modeling of detonation suppression by inert particles in methane-oxygen and methane-hydrogen-oxygen mixtures”, Combustion, Explosion, and Shock Waves, 50:5 (2014), 542–546 | DOI
[12] Nigmatulin R. I., Dynamics of multiphase media, v. 1, Nauka, M., 1987
[13] Shotorban B., Jacobs G. B., Ortiz O., Truong Q., “An Eulerian model for particles nonisothermally carried by a compressible fluid”, Int. J. Heat and Mass Transfer, 65 (2013), 845–854 | DOI
[14] Sternin L. E., Maslov B. P., Shrayber A. A., Podvysotskiy A. M., Two-phase mono- and polydisperse flows of gas with particles, Mashinostroenie, M., 1980
[15] van Leer B., “Flux-vector splitting for the euler equation”, Lecture Notes in Physics, 170, 1982, 507–512 | DOI
[16] Krayko A. N., “On discontinuity surfaces in a medium devoid of “proper” pressure”, Journal of Applied Mathematics and Mechanics, 43:3 (1979), 539–549 | DOI | MR | MR | Zbl
[17] Sod G. A., “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws”, J. Computational Physics, 27:1 (1978), 1–31 | DOI | MR | Zbl