@article{VTGU_2017_49_a5,
author = {A. A. Semyonova and A. V. Starchenko},
title = {The finite-difference scheme for the unsteady convection-diffusion equation based on weighted local cubic spline interpolation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {61--74},
year = {2017},
number = {49},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a5/}
}
TY - JOUR AU - A. A. Semyonova AU - A. V. Starchenko TI - The finite-difference scheme for the unsteady convection-diffusion equation based on weighted local cubic spline interpolation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 61 EP - 74 IS - 49 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a5/ LA - ru ID - VTGU_2017_49_a5 ER -
%0 Journal Article %A A. A. Semyonova %A A. V. Starchenko %T The finite-difference scheme for the unsteady convection-diffusion equation based on weighted local cubic spline interpolation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 61-74 %N 49 %U http://geodesic.mathdoc.fr/item/VTGU_2017_49_a5/ %G ru %F VTGU_2017_49_a5
A. A. Semyonova; A. V. Starchenko. The finite-difference scheme for the unsteady convection-diffusion equation based on weighted local cubic spline interpolation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 61-74. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a5/
[1] Samarskiy A. A., Mihaylov A. P., Mathematical modeling, Fizmatlit, M., 2001
[2] Samarskiy A. A., Theory of finite difference schemes, Nauka, M., 1977
[3] Godunov S. K., “A Difference scheme for numerical solution of discontinuous solution of hydrodynamic equations”, Math. Sbornik, 47(89):3 (1959), 271–306 | Zbl
[4] Lax P. D., Wendroff B., “Systems of conservation laws”, Communications in Pure and Applied Mathematics, 13 (1960), 217–237 | DOI | MR | Zbl
[5] Kolgan V. P., “Application of the principle of minimum derivatives to the construction of difference schemes for computing discontinuous solutions of gas dynamics”, Uch. Zap. TsaGI, 3:6 (1972), 68–77
[6] van Leer B., “Towards the ultimate conservative difference scheme I. The quest for monotonicity”, Lecture Notes in Physics, 18, 1973, 163–168 | DOI | MR | Zbl
[7] van Leer B., “Towards the ultimate conservative difference scheme II. Monotonicity and conservation combined in a second-order scheme”, J. Comp. Phys., 14 (1974), 361–370 | DOI | MR | Zbl
[8] Noll B., “Evaluation of a bounded high-resolution scheme for combustor flow computations”, AIAA Journal, 30:1 (1992), 64–68 | DOI
[9] van Leer B., “Towards the ultimate conservative difference scheme V. A Second order sequel to Godunov's method”, J. Comput. Phys., 32 (1979), 101–136 | DOI | MR | Zbl
[10] Toro E. F., Riemann solvers and numerical methods for fluid dynamics, 2nd edition, Springer, Berlin–Heidelberg, 1999, 645 pp. | DOI | MR | Zbl
[11] Lebedev A. S., Chernyj S. G., Practice on the numerical solution of partial differential equations, NSU publ., Novosibirsk, 2000, 136 pp.
[12] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comp. Phys., 49 (1983), 357–393 | DOI | MR | Zbl
[13] Roe P. L., “Characteristic-based schemes for the Euler equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl
[14] Harten A., Engquist B., Osher S., Chakravarthy S. R., “Some results on uniformly highorder accurate essentially non-oscillatory schemes”, J. Appl. Num. Math., 2 (1986), 347–377 | DOI | MR | Zbl
[15] Kvasov B. I., Methods of shape-preserving spline approximation, World Scientific Publishing Company, Singapore, 2000 | MR | Zbl
[16] Karpova A. A., “Approximation of tabulated functions by means of approximation and interpolation weighted splines”, Scientific Conference of Students of the Mechanics and Mathematics Department (24–30 april 2014, Tomsk), 2014, 38–39
[17] Marchuk G. I., Mathematical models in environmental problems, Elsevier, Amsterdam, 1982 | MR
[18] Cada M., Torrilhon M., “Compact third-order limiter functions for finite volume methods”, J. Computational Physics, 228:11 (2009), 4118–4145 | DOI | MR | Zbl
[19] Starchenko A. V., Danilkin E. A., Semenova A. A., Bart A. A., “Parallel algorithms for a 3D photochemical model of pollutant transport in the atmosphere”, Communications in Computer and Information Science, 687 (2016), 158–171 | DOI
[20] Chi-Wang Shu, Essentially non-oscillatory schemes for hyperbolic conservation laws, Preprint of Division of Applied Mathematics, Brown University, 1996, 92 pp. | MR
[21] Rivin G. S., Voronina P. V., “Aerosol transfer in the atmosphere: selection of a finite difference scheme”, Atmospheric and Oceanic Optics, 10:6 (1997), 386–392 | Zbl