Keywords: improved estimation, mean square risk, conditionally Gaussian noise, $\mathrm{AR/ARCH}$ process.
@article{VTGU_2017_49_a3,
author = {M. A. Povzun and E. A. Pchelintsev},
title = {Estimating parameters in a regression model with dependent noises},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {43--51},
year = {2017},
number = {49},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a3/}
}
TY - JOUR AU - M. A. Povzun AU - E. A. Pchelintsev TI - Estimating parameters in a regression model with dependent noises JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 43 EP - 51 IS - 49 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a3/ LA - ru ID - VTGU_2017_49_a3 ER -
M. A. Povzun; E. A. Pchelintsev. Estimating parameters in a regression model with dependent noises. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 43-51. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a3/
[1] Ibragimov I. A., Khasminsky R. Z., Asymptotic estimation theory, Nauka, M., 1979
[2] Shiryaev A. N., Fundamentals of stochastic financial mathematics, v. 1, Facts. Models, PHASIS, M., 1998
[3] Fourdrinier D., Statistique inferentielle, Dunod, Paris, 2002, 336
[4] James W., Stein C., “Estimation with quadratic loss”, Proc. Fourth Berkeley Symposium on Mathematics Statistics and Probability, v. 1, University of California Press, Berkeley, 1961, 361–380 | MR
[5] Berger J. O., Haff L. R., “A class of minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Statist. Decisions, 1983, no. 1, 105–129 | MR | Zbl
[6] Efron B., Morris C., “Families of minimax estimators of the mean of a multivariate normal distribution”, Ann. Statist., 1976, no. 4, 11–21 | DOI | MR | Zbl
[7] Gleser L. J., “Minimax estimators of a normal mean vector for arbitrary quadratic loss and unknown covariance matrix”, Ann. Statist., 14:4 (1986), 1625–1633 | DOI | MR | Zbl
[8] Stein C., “Estimation of the mean of a multivariate normal distribution”, Ann. Statist., 9:6 (1981), 1135–1151 | DOI | MR | Zbl
[9] Fourdrinier D., Strawderman W. E., William E., “A unified and generalized set of shrinkage bounds on minimax Stein estimates”, J. Multivariate Anal., 99 (2008), 2221–2233 | DOI | MR | Zbl
[10] Pchelintsev E., “The James–Stein procedure for the conditionally Gaussian regression”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i Mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2011, no. 4(16), 6–17
[11] Konev V. V., “Estimation of parametric regression with pulsed noise from discrete observations”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i Mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2012, no. 1(17), 20–35
[12] Konev V. V., Pergamenschikov S. M., Pchelintsev E. A., “Estimation of parametric regression with pulsed noise from discrete observations”, Theory of Probability and its Applications, 58:3 (2014), 442–457 | DOI | DOI | MR | Zbl
[13] Pchelintsev E., “Improved estimation in a non-Gaussian parametric regression”, Statistical Inference for Stochastic Processes, 1 (2013), 16–28 | MR | Zbl
[14] Pchelintsev E. A., Pchelintsev V. A., “Minimax estimation of the Gaussian parametric regression”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i Mekhanika — Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 5(31), 40–47