Necessary optimality conditions in the one boundary control problem for Qoursat--Darboux systems
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 26-42
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, a boundary optimal control problem described by the Goursat–Darboux system
is considered under the assumption that the control domain is open.
We consider the problem of minimizing of the functional
$$
I(u)=\varphi(a(t_1))+G(z(t_1,x_1)),
$$
under constraints
\begin{gather*}
u(t)\in U\subset R^r, \quad t\in T=[t_0,t_1],\\
z_{tx}=B(t,x)z_t+f(t, x, z, z_x), \quad(t, x)\in D=[t_0, t_1]\times[x_0, x_1],\\
z(t,x_0)=a(t), \quad t\in T=[t_0, t_1],\\
z(t_0, x)=b(x), \quad x\in X=[x_0,x_1],\\
a(t_0)=b(x_0)=a_0,\\
\dot{a}=g(t,a,u),\quad t\in T,\\
a(t_0)=a_0.
\end{gather*} Here, $f(t,x,z,z_x)$ is a given $n$-dimensional vector-function which is continuous with respect
to set of variables, together with partial derivatives with respect to $z,z_x$ up to second order,
$B(t,x)$ is a given measurable and bounded matrix function, $b(x)$ is a given $n$-dimensional absolute
continuous vector-valued function, $t_0, t_1, x_0, x_1$ ($t_0$) are given, $a_0$ a is a given
constant vector, $g(t,a,u)$ given $n$-dimensional vector-function which is continuous with respect
to the set of variables together with partial derivatives with respect to $(a,u)$ up to second order,
$\varphi(a)$ and $G(z)$ are given twice continuously differentiable scalar functions, $U$ is a given nonempty,
bounded, and open set, and $u(t)$ is a measurable and bounded $r$-dimensional control
vector-function.
The first and second order necessary conditions of optimality are established.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
boundary control, Goursat–Darboux systems, analoqus the Gabasov–Kirillova optimality condition.
Mots-clés : analoqus the Eyler equation
                    
                  
                
                
                Mots-clés : analoqus the Eyler equation
@article{VTGU_2017_49_a2,
     author = {K. B. Mansimov and V. A. Suleymanova},
     title = {Necessary optimality conditions in the one boundary control problem for {Qoursat--Darboux} systems},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {26--42},
     publisher = {mathdoc},
     number = {49},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/}
}
                      
                      
                    TY - JOUR AU - K. B. Mansimov AU - V. A. Suleymanova TI - Necessary optimality conditions in the one boundary control problem for Qoursat--Darboux systems JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 26 EP - 42 IS - 49 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/ LA - ru ID - VTGU_2017_49_a2 ER -
%0 Journal Article %A K. B. Mansimov %A V. A. Suleymanova %T Necessary optimality conditions in the one boundary control problem for Qoursat--Darboux systems %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 26-42 %N 49 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/ %G ru %F VTGU_2017_49_a2
K. B. Mansimov; V. A. Suleymanova. Necessary optimality conditions in the one boundary control problem for Qoursat--Darboux systems. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 26-42. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/
