Necessary optimality conditions in the one boundary control problem for Qoursat–Darboux systems
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 26-42 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a boundary optimal control problem described by the Goursat–Darboux system is considered under the assumption that the control domain is open. We consider the problem of minimizing of the functional $$ I(u)=\varphi(a(t_1))+G(z(t_1,x_1)), $$ under constraints \begin{gather*} u(t)\in U\subset R^r, \quad t\in T=[t_0,t_1],\\ z_{tx}=B(t,x)z_t+f(t, x, z, z_x), \quad(t, x)\in D=[t_0, t_1]\times[x_0, x_1],\\ z(t,x_0)=a(t), \quad t\in T=[t_0, t_1],\\ z(t_0, x)=b(x), \quad x\in X=[x_0,x_1],\\ a(t_0)=b(x_0)=a_0,\\ \dot{a}=g(t,a,u),\quad t\in T,\\ a(t_0)=a_0. \end{gather*} Here, $f(t,x,z,z_x)$ is a given $n$-dimensional vector-function which is continuous with respect to set of variables, together with partial derivatives with respect to $z,z_x$ up to second order, $B(t,x)$ is a given measurable and bounded matrix function, $b(x)$ is a given $n$-dimensional absolute continuous vector-valued function, $t_0, t_1, x_0, x_1$ ($t_0) are given, $a_0$ a is a given constant vector, $g(t,a,u)$ given $n$-dimensional vector-function which is continuous with respect to the set of variables together with partial derivatives with respect to $(a,u)$ up to second order, $\varphi(a)$ and $G(z)$ are given twice continuously differentiable scalar functions, $U$ is a given nonempty, bounded, and open set, and $u(t)$ is a measurable and bounded $r$-dimensional control vector-function. The first and second order necessary conditions of optimality are established.
Keywords: boundary control, Goursat–Darboux systems, analoqus the Gabasov–Kirillova optimality condition.
Mots-clés : analoqus the Eyler equation
@article{VTGU_2017_49_a2,
     author = {K. B. Mansimov and V. A. Suleymanova},
     title = {Necessary optimality conditions in the one boundary control problem for {Qoursat{\textendash}Darboux} systems},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {26--42},
     year = {2017},
     number = {49},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/}
}
TY  - JOUR
AU  - K. B. Mansimov
AU  - V. A. Suleymanova
TI  - Necessary optimality conditions in the one boundary control problem for Qoursat–Darboux systems
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 26
EP  - 42
IS  - 49
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/
LA  - ru
ID  - VTGU_2017_49_a2
ER  - 
%0 Journal Article
%A K. B. Mansimov
%A V. A. Suleymanova
%T Necessary optimality conditions in the one boundary control problem for Qoursat–Darboux systems
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 26-42
%N 49
%U http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/
%G ru
%F VTGU_2017_49_a2
K. B. Mansimov; V. A. Suleymanova. Necessary optimality conditions in the one boundary control problem for Qoursat–Darboux systems. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 26-42. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a2/

[1] Yegorov A. I., “Necessary optimality conditions for systems with distributed parameters”, Matematicheskii sbornik, 69:3 (1966), 371–421 | Zbl

[2] Yegorov A. I., “Optimal processes in systems with distributed parameters and some problems of the theory of invariance”, Izv. Academy of Sciences of the USSR. Ser. math., 29:6 (1965), 1205–1260 | Zbl

[3] Yegorov A. I., “Optimal control of systems with distributed parameters and some problems of invariance theory”, Optimal Systems. Statistical methods, Nauka, M., 1967, 76–92

[4] Srochko V. A., Variational Maximum Principle and Linearization Method in Optimal Control Problems, Irkutsk University Publ., Irkutsk, 1989

[5] Vasilyev O. V., Qualitative and constructive methods for optimizing systems with distributed parameters, Avtoref. diss. degree of doctor of phys.-math. sciences, L., 1984, 42 pp.

[6] Vasilyev F. P., Methods for solving extreme problems, Nauka, M., 1981

[7] Vasilyev O. V., Srochko V. A., Terletskiy V. A., Optimization methods and their applications, Nauka, Novosibirsk, 1990

[8] Pogodaev N. I., “On the properties of solutions to the Goursat-Darboux problem with boundary and distributed controls”, Sib. Math. J., 48:5 (2007), 897–912 | DOI | MR | Zbl

[9] Pogodayev N. I., On solutions of the Goursat–Darboux system with distributed and boundary controls, Abstract. diss. scientific degree of candidate of physico-mathematical sciences, Irkutsk, 2009, 18 pp.

[10] Alekseyev V. M., Tikhomirov V. M., Fomin S. V., Optimal control, Nauka, M., 1979

[11] Mansimov K. B., Mardanov M. J., Qualitative theory of optimal control for Goursat–Darboux systems, Elm Publ., Baku, 2010

[12] Plotnikov V. I., Sumin V. I., “The optimization of objects with distributed parameters, described by Goursat–Darboux systems”, USSR Computational Mathematics and Mathematical Physics, 12:1 (1972), 73–92 | DOI | MR

[13] Plotnikov V. I., Sumin V. I., “Problems of stability of nonlinear Goursat–Darboux systems”, Differents. Uravneniya, 1972, no. 5, 845–856 | Zbl

[14] Gasanov K. K., “The existence of optimal controls for processes described by a system of hyperbolic equations”, USSR Computational Mathematics and Mathematical Physics, 13:3 (1973), 78–90 | DOI | MR

[15] Gabasov R., Kirillova F. M., et al., Methods of optimization, Chetyre chetverti, Minsk, 2011

[16] Morduhovich B. Sh., Method of matrix approximations in optimization and control problems, Nauka, M., 1988

[17] Pontryagin L. S. et al., Mathematical theory of optimal processes, Nauka, M., 1969

[18] Novozhenov M. M., Sumin V. I., Sumin M. I., Methods of optimal control of systems of mathematical physics, Izd-vo GGU, Gor'kiy, 1986

[19] Gabasov R., Kirillova F. M., Optimization of linear systems, Izd-vo BSU, Minsk, 1973

[20] Akhiyev S. S., Akhmedov K. T., “On the integral representation of solutions of some differential equations”, Izv. AN Azerb. SSR. Ser. Fiz.-tehn. and mat. Sciences, 1973, no. 2

[21] Mansimov K. B., “On a scheme for investigating special controls in Goursat–Darboux systems”, Izv. AN Azerb. SSR. Ser. Fiz.-tehn. and math. Sciences, 1981, no. 2, 100–104

[22] Mansimov K. B., Investigation of special processes in problems of optimal control, Avtoref. diss. degree of phys. math. sciences, Baku, 1994, 42 pp.

[23] Gorokhavik S. Ya., “Necessary optimality conditions for the problem with the right end of the moving path”, Differential Equations, 1975, no. 10, 1765–1773 | Zbl

[24] Gabasov R., Kirillova F. M., Special optimal controls, Nauka, M., 1973

[25] Gabasov R., Kirillova F. M., “To the theory of necessary conditions for high-order optimality”, Differents. Equations, 1970, no. 4, 665–670

[26] Gabasov R., Kirillova F. M., “On the optimality of singular controls”, Differents. Equations, 1969, no. 6, 1000–1011