On the inverse problem of finding the right-hand side of wave equation with nonlocal condition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 16-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, inverse problems for the differential equations have been intensively studied. Such problems arise in the various fields of mathematics, geophysics, seismology, astronomy, ecology, etc. In this paper, we propose an approach to solving the inverse problem for the wave equation. The search for the unknown right-hand side of the equation is reduced to the problem of minimizing the functional constructed using additional information. The gradient of the functional is calculated and the optimality condition is derived. In the cylinder $\mathcal{Q}_T=\Omega\times(0,T)$, consider the problem \begin{gather} \frac{\partial^2u}{\partial t^2}-\Delta u=\vartheta(x,t), \quad (x,t)\in\mathcal{Q}_T,\\ u(x,0)=\varphi_0(x), \frac{\partial u(x,0)}{\partial t}=\varphi_1(x), \quad x\in\Omega,\\ \frac{\partial u}{\partial \nu}\Big|_{S_T}=\int_\Omega K(x,y)u(y,t)dy,\quad (x,t)\in S_T, \end{gather} where $\Omega\in R^n$ is a bounded domain with a smooth boundary $\partial\Omega$, $S_T=\partial\Omega\times(0,T)$ is the laterial surface of $\mathcal{Q}_T$, $\nu$ is an outward normal to $\partial\Omega$, $\varphi_0(x)\in W_2^1(\Omega)$, $\varphi_1(x)\in L_2(\Omega)$, $K(x,y)\in L_2(\Omega\times\Omega)$ are given functions, and $\vartheta(x,t)\in L_2(\mathcal{Q}_T)$ is the unknown function. To determine $\vartheta(x,t)$, we use the following additional information: \begin{equation} u(x, T)=g(x), x\in\Omega, \text{ where }g(x)\in L_2(\Omega) \text{ is a given function.} \tag{4} \end{equation} The problem is reduced to the following problem: minimize the functional \begin{equation} J_0(\vartheta)=\frac12\int_\Omega(u(x,T;\vartheta)-g(x))^2dx\tag{5} \end{equation} subject to (1)–(3), where $u(x,T;\vartheta)$ is a solution of problem (1)–(3) corresponding to $\vartheta(x,t)$ which is called a control. The solvability of problem (1)–(3), (5) is proved. Consider the functional \begin{equation} J_\alpha(\vartheta)=J_0(\vartheta)+\frac\alpha2\int_0^T\int_\Omega(\vartheta(x,t)-\omega(x,t))^2dx\,dt.\tag{6} \end{equation} Then, the differential of this functional is calculated and the following theorem is proved: Theorem. Under the considered conditions, for the optimality of the control $\vartheta_*=\vartheta_*(x,t)\in U_{ad}$ in the problem (1)–(3), (6) it is necessary that the inequality \begin{equation} \int_0^T\int_\Omega(\alpha(\vartheta_*-\omega)-\psi(x,t;\vartheta_*))(\vartheta-\vartheta_*)dx\,dt\geqslant0\tag{7} \end{equation} is fulfilled for all $\vartheta\in U_{ad}$.
Keywords: inverse problem, wave equation, optimality condition.
Mots-clés : nonlocal conditions
@article{VTGU_2017_49_a1,
     author = {H. F. Guliyev and Yu. S. Gasimov and H. T. Tagiyev and T. M. Huseynova},
     title = {On the inverse problem of finding the right-hand side of wave equation with nonlocal condition},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {16--25},
     year = {2017},
     number = {49},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a1/}
}
TY  - JOUR
AU  - H. F. Guliyev
AU  - Yu. S. Gasimov
AU  - H. T. Tagiyev
AU  - T. M. Huseynova
TI  - On the inverse problem of finding the right-hand side of wave equation with nonlocal condition
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 16
EP  - 25
IS  - 49
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a1/
LA  - ru
ID  - VTGU_2017_49_a1
ER  - 
%0 Journal Article
%A H. F. Guliyev
%A Yu. S. Gasimov
%A H. T. Tagiyev
%A T. M. Huseynova
%T On the inverse problem of finding the right-hand side of wave equation with nonlocal condition
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 16-25
%N 49
%U http://geodesic.mathdoc.fr/item/VTGU_2017_49_a1/
%G ru
%F VTGU_2017_49_a1
H. F. Guliyev; Yu. S. Gasimov; H. T. Tagiyev; T. M. Huseynova. On the inverse problem of finding the right-hand side of wave equation with nonlocal condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 16-25. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a1/

[1] Kabanikhin S. I., Inverse and ill-posed problems, Sibirskoe nauchnoe izdatel'stvo, Novosibirsk, 2009

[2] Kozhanov A. I., Pul'kina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Diff. Equat., 42 (2006), 1233–1246 | DOI | MR | Zbl

[3] Kolmogorov A. N., Fomin S. V., Elements of the theory of functions and functional analysis, Nauka, M., 1981

[4] Ladyzhenskaya O. A., Boundary value problems of mathematical physics, Nauka, M., 1973

[5] Lions J. L., Controle optimal de systemes gouvernes par des equations derivees partielles, Dunod, Gauthier-Villars, Paris, 1968 | MR | Zbl

[6] Vasilyev F. P., Methods for solving extreme problems, Nauka, M., 1981

[7] Tagiev H. T., “Gradient of the functional in the optimal control problem with non-local conditions for the wave equation”, Proceedings of the Institute of Mathematics and Mechanics NAS of Azerbaijan, XXXVII(XLV) (2012), 139–148 | MR