On small variation formulas
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 5-15
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			One of the main methods for solving extremal problems is the variational method. Variational
formulas are the main tool of the variational method. Some variational formulas, the so-called
small variational formulas, were obtained by means of a family of mappings from the unit disk
onto domains lying in the unit disk. There is a theorem in the paper that gives a rather general
approach to obtaining small variational formulas.
Theorem. Let the map $g: E_z\times (0,\varepsilon_0)\to E_\zeta$, $\zeta=g(z,\varepsilon)$ satisfy the following conditions:
$\forall \varepsilon\in (0,\varepsilon_0)$, the contraction $g\mid_{E\times\{\varepsilon\}}$ is a holomorphic univalent mapping;
$\lim\limits_{\varepsilon\to+0}g(z,\varepsilon)=z$, locally uniformly in $E_z$;
there exists a partial right derivative of $g(z,\varepsilon)$ and $g'_z(z,\varepsilon)$ with respect to $\varepsilon$ at the origin,
locally uniformly in $E_z$.
Then, in the class $S$ for the mapping $f\in S$, the following variational formulas take place:
\begin{gather*}
f_1(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)g'_\varepsilon(z,0) -f(z)f''(0)g'_\varepsilon(0,0)-f(z)g''_{z\varepsilon}(0,0)\right)+o(z,\varepsilon),\\ \varepsilon\in(0,\varepsilon_0), \tag{1}
\end{gather*}
where $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$;
\begin{gather*}
f_2(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)\left(z^2\overline{g'_\varepsilon(0,0)}+g'_\varepsilon(z,0)-g'_\varepsilon(0,0)\right)-f(z)g''_{z\varepsilon}(0,0)\right)+o(z,\varepsilon),\\ \varepsilon\in(0,\varepsilon_0), \tag{2}
\end{gather*}
where $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$;
\begin{equation}
f_3(z,\varepsilon)=f(z)+\varepsilon P_3(z)+o(z,\varepsilon),\quad \varepsilon\in(0,\hat\varepsilon), \tag{3}
\end{equation}
where
\begin{gather*}
P_3(z)=f'(z)(g'_\varepsilon(z,0)+z^2\overline{u}-u+itz)-\\
-f(z)(f''(0)(g'_\varepsilon(0,0)-u)+g''_{z\varepsilon}(0,0)+it)-g'_\varepsilon(0,0)+u,
\end{gather*}
$\hat\varepsilon=\min\left(\varepsilon_0,\frac1{|u|}\right)$, $u$, $t$ are constants, $u\in\mathbb{C}$, $t\in\mathbb{R}$, and $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$  locally uniformly in $E_z$;
\begin{gather*}
f_4(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)\left(z^2\overline{g'_\varepsilon(0,0)}+g'_\varepsilon(z,0)-g'_\varepsilon(0,0)+itz\right)-f(z)(g''_{z\varepsilon}(0,0)+it)\right)+\\
+o(z,\varepsilon),\quad 
\varepsilon\in(0,\hat\varepsilon),\tag{4}
\end{gather*}
where $t$ is a constant, $t\in\mathbb{R}$, and $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$.
A number of new small variations have been obtained. In adition, the P. P. Kufarev method of
finding parameters in the Christoffel–Schwarz integral is illustrated by a simple example.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
holomorphic univalent mapping, parameters in the Christoffel–Schwarz integral, Kufarev method.
Mots-clés : variational formula
                    
                  
                
                
                Mots-clés : variational formula
@article{VTGU_2017_49_a0,
     author = {Ya. V. Borisova and I. A. Kolesnikov and S. A. Kopanev},
     title = {On small variation formulas},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--15},
     publisher = {mathdoc},
     number = {49},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a0/}
}
                      
                      
                    TY - JOUR AU - Ya. V. Borisova AU - I. A. Kolesnikov AU - S. A. Kopanev TI - On small variation formulas JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 5 EP - 15 IS - 49 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a0/ LA - ru ID - VTGU_2017_49_a0 ER -
Ya. V. Borisova; I. A. Kolesnikov; S. A. Kopanev. On small variation formulas. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 5-15. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a0/
