On small variation formulas
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the main methods for solving extremal problems is the variational method. Variational formulas are the main tool of the variational method. Some variational formulas, the so-called small variational formulas, were obtained by means of a family of mappings from the unit disk onto domains lying in the unit disk. There is a theorem in the paper that gives a rather general approach to obtaining small variational formulas. Theorem. Let the map $g: E_z\times (0,\varepsilon_0)\to E_\zeta$, $\zeta=g(z,\varepsilon)$ satisfy the following conditions: $\forall \varepsilon\in (0,\varepsilon_0)$, the contraction $g\mid_{E\times\{\varepsilon\}}$ is a holomorphic univalent mapping; $\lim\limits_{\varepsilon\to+0}g(z,\varepsilon)=z$, locally uniformly in $E_z$; there exists a partial right derivative of $g(z,\varepsilon)$ and $g'_z(z,\varepsilon)$ with respect to $\varepsilon$ at the origin, locally uniformly in $E_z$. Then, in the class $S$ for the mapping $f\in S$, the following variational formulas take place: \begin{gather*} f_1(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)g'_\varepsilon(z,0) -f(z)f''(0)g'_\varepsilon(0,0)-f(z)g''_{z\varepsilon}(0,0)\right)+o(z,\varepsilon),\\ \varepsilon\in(0,\varepsilon_0), \tag{1} \end{gather*} where $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$; \begin{gather*} f_2(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)\left(z^2\overline{g'_\varepsilon(0,0)}+g'_\varepsilon(z,0)-g'_\varepsilon(0,0)\right)-f(z)g''_{z\varepsilon}(0,0)\right)+o(z,\varepsilon),\\ \varepsilon\in(0,\varepsilon_0), \tag{2} \end{gather*} where $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$; \begin{equation} f_3(z,\varepsilon)=f(z)+\varepsilon P_3(z)+o(z,\varepsilon),\quad \varepsilon\in(0,\hat\varepsilon), \tag{3} \end{equation} where \begin{gather*} P_3(z)=f'(z)(g'_\varepsilon(z,0)+z^2\overline{u}-u+itz)-\\ -f(z)(f''(0)(g'_\varepsilon(0,0)-u)+g''_{z\varepsilon}(0,0)+it)-g'_\varepsilon(0,0)+u, \end{gather*} $\hat\varepsilon=\min\left(\varepsilon_0,\frac1{|u|}\right)$, $u$, $t$ are constants, $u\in\mathbb{C}$, $t\in\mathbb{R}$, and $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$; \begin{gather*} f_4(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)\left(z^2\overline{g'_\varepsilon(0,0)}+g'_\varepsilon(z,0)-g'_\varepsilon(0,0)+itz\right)-f(z)(g''_{z\varepsilon}(0,0)+it)\right)+\\ +o(z,\varepsilon),\quad \varepsilon\in(0,\hat\varepsilon),\tag{4} \end{gather*} where $t$ is a constant, $t\in\mathbb{R}$, and $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$. A number of new small variations have been obtained. In adition, the P. P. Kufarev method of finding parameters in the Christoffel–Schwarz integral is illustrated by a simple example.
Keywords: holomorphic univalent mapping, parameters in the Christoffel–Schwarz integral, Kufarev method.
Mots-clés : variational formula
@article{VTGU_2017_49_a0,
     author = {Ya. V. Borisova and I. A. Kolesnikov and S. A. Kopanev},
     title = {On small variation formulas},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--15},
     year = {2017},
     number = {49},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_49_a0/}
}
TY  - JOUR
AU  - Ya. V. Borisova
AU  - I. A. Kolesnikov
AU  - S. A. Kopanev
TI  - On small variation formulas
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 5
EP  - 15
IS  - 49
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_49_a0/
LA  - ru
ID  - VTGU_2017_49_a0
ER  - 
%0 Journal Article
%A Ya. V. Borisova
%A I. A. Kolesnikov
%A S. A. Kopanev
%T On small variation formulas
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 5-15
%N 49
%U http://geodesic.mathdoc.fr/item/VTGU_2017_49_a0/
%G ru
%F VTGU_2017_49_a0
Ya. V. Borisova; I. A. Kolesnikov; S. A. Kopanev. On small variation formulas. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 49 (2017), pp. 5-15. http://geodesic.mathdoc.fr/item/VTGU_2017_49_a0/

[1] Goluzin M. G., Geometric theory of a function of a complex variable, Nauka, M., 1966

[2] Aleksandrov I. A., Methods of the geometric theory of analytic functions, TSU Publ., Tomsk, 2001

[3] Proceedings of P. P. Kufarev: on the 100th anniversary of his birth, NTL Publ., Tomsk, 2009

[4] Aleksandrov I. A., Parametric continuations in the theory of univalent functions, Nauka, M., 1976

[5] Schiffer M., “On the coefficient problem for univalent functions”, Trans. Amer. Math. Soc., 134:1 (1968), 95–101 | DOI | MR | Zbl