Numerical study of the influence of substrate material on deformation and fracture of the coating–substrate system
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 91-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The experimental techniques such as instrumented indentation and scratch-test are generally used to study mechanical properties of the "coating–substrate" systems. However, technical limitations of a modern equipment cause certain difficulties in the investigation of the systems under consideration. In this paper, the processes of indentation and scratch-testing of the hardened coatings on the various substrates have been studied numerically using the movable cellular automata. The convergence analysis for elastic modulus and yield stress has been carried out to determine the representative volume element. Numerical simulation included explicitly the transition layer and the coating of 200 and 1800 nm in thickness, respectively. The elastic modulus and hardness of the system have been performed as functions of indentation depth after analyzing the simulation results using the method of Oliver and Pharr. It has been found that the substrate has a significant impact on the obtained mechanical characteristics even at the depth of indentation less than 1/10 of the coating thickness. As a result, the modeling of the scratch testing of the coating-substrate system made possible to obtain the scratch images and the time dependences of friction coefficient. Analysis of the results showed that the coating delamination occurred both in the case of oxide substrate and in the case of harder substrate; less strength is required for the latter. Delamination does not occur during the scratching of the hardened coating of titanium substrate. The value of the friction coefficient between the coating material and indenter during the instrumented scratching depends on the substrate material and it is equal to 0.25, 0.28, and 0.22 for nanostructured titanium, sapphire, and fused silica, respectively.
Keywords: nanoindentation, scratch-test, modeling, movable cellular automata method, nanostructured titanium, coatings.
@article{VTGU_2017_48_a8,
     author = {A. Yu. Smolin and G. M. Eremina},
     title = {Numerical study of the influence of substrate material on deformation and fracture of the coating{\textendash}substrate system},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {91--106},
     year = {2017},
     number = {48},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/}
}
TY  - JOUR
AU  - A. Yu. Smolin
AU  - G. M. Eremina
TI  - Numerical study of the influence of substrate material on deformation and fracture of the coating–substrate system
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 91
EP  - 106
IS  - 48
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/
LA  - ru
ID  - VTGU_2017_48_a8
ER  - 
%0 Journal Article
%A A. Yu. Smolin
%A G. M. Eremina
%T Numerical study of the influence of substrate material on deformation and fracture of the coating–substrate system
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 91-106
%N 48
%U http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/
%G ru
%F VTGU_2017_48_a8
A. Yu. Smolin; G. M. Eremina. Numerical study of the influence of substrate material on deformation and fracture of the coating–substrate system. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 91-106. http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/

[1] Oliver W. C., Farr G. M., “Measurement of hardness and elastic modulus by instrumented indentation: Advanced in understanding and refinements to methodology”, J. Mater. Res., 19:1 (2004), 73–78 | DOI

[2] Shugurov A. R., Panin A. V., Shesterikov E. V., “Sclerometric study of galvanic AuNi and AuCo coatings”, Technical Physics Letters, 37:3 (2011), 223–225 | DOI

[3] Lamovec J., Jovic V., Aleksic R., Radojevic V., “Micromechanical and structural properties of nickel coatings electrodeposited on two different substrates”, J. Serb. Chem. Soc., 74:7 (2009), 817–831 | DOI

[4] Jeng Y.-R., Tan C.-M., Su C. C., Cheng S.-C., Cheng C.-Y., “Experimental study on the nanoindentation of thin copper films from deep submicron to nano-scale”, J. Mechanics, 28 (2012), 507–511 | DOI

[5] Vlachos D. E., Markopoulos Y. P., Kostopoulos V., “3-D Modeling of nanoindentation experiment on a coating-substrate system”, Computational Mechanics, 27 (2001), 138–144 | DOI | Zbl

[6] Gamonpilas C., Busso E. P., “On the effect of substrate properties on the indentation behaviour of coated systems”, Materials Science and Engineering, A 380 (2004), 52–61 | DOI

[7] Ronkainen H., Holmberg K., Laukkanen A., et al., “The effect of coating properties on the performance of a-C:H and TA-C films”, Tribologia, 31:3–4 (2012), 3–35

[8] Sukumar N., Chopp D. L., Moran B., “Extended finite element method and fast marching method for three-dimensional fatigue crack propagation”, Engineering Fracture Mechanics, 70 (2003), 29–48 | DOI

[9] Perzynski K., Madej L., “Numerical modeling of fracture during nanoindentation of the TiN coatings obtained with the PLD process”, Bulletin of the Polish Academy of Science, 61:4 (2013), 973–978 | DOI

[10] Abdul-Baqi A., “Indentation-induced interface delamination of a strong film on a ductile substrate”, Thin Solid Films, 381 (2001), 143–154 | DOI

[11] Shilko E. V., Psakhie S. G., Schmauder S., et al., “Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure”, Comp. Mater. Sci., 102 (2015), 267–285 | DOI

[12] Cundall P. A., Strack D. L., “A discrete numerical model for granular assemblies”, Geotechnique, 29:1 (1979), 47–165 | DOI

[13] Potyondy D. O., Cundall P. A., “A bonded-particle model for rock”, Int. J. Rock Mech. Min. Sci., 41 (2004), 1329–1364 | DOI

[14] Psakhie S. G., Shilko E. V., Horie Y., et al., “Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials”, Frattura ed Integrita Strutturale, 24 (2013), 26–59 | DOI

[15] Levashov E. A., Shtanskiy D. V., Kiryukhantsev-Korneev F. V., Petrzhik M. I., Tyurina M. Ya., Sheveyko A. N., “Multifunctional nanostructured coatings: Formation, structure, and the uniformity of measuring their mechanical and tribological properties”, Russian Metallurgy (Metally), 2010, no. 10, 917–935 | DOI

[16] Levashov E. A., Petrzhik M. I., Kiryukhantsev-Korneev F. V., Shtanskiy D. V., Prokoshkin S. D., Gunderov D. V., Sheveyko A. N., Korotitskiy A. V., Valiev R. Z., “Structure and mechanical behavior during indentation of biocompatible nanostructure titanium alloys and coatings”, Metallurgist, 56:5–6 (2012), 395–407 | DOI

[17] Levashov E. A., Petrzhik M. I., Kiryukhantsev-Korneev F. V., et al., “Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation”, Materials Science and Engineering, 570 (2013), 51–62 | DOI

[18] Smolin A. Yu., Eremina G. M., Sergeev V. V., Shil'ko E. V., Psakhie S. G., “Threedimensional MCA simulation of elastoplastic deformation and fracture of coatings in contact interaction with a rigid indenter”, Physical Mesomechanics, 17:4 (2014), 292–303 | DOI

[19] Giannakpoulos A. E., Suresh S., “Determination of elastoplasic properties by instrumented sharp indentation”, Scripta Materialia, 40:10 (1999), 1191–1198 | DOI

[20] Bychkova M. Ya., Creation of state standard samples and measurement techniques for elastic modulus and friction coefficient in order to control and certificate nanostructured coatings, Dissertation for Cand.Tech. Sciences, M., 2015, 131 pp.

[21] Elias C. N., Meyers M. A., Valiev R. Z., Monteiro S. N., “Ultrafine grained titanium for biomedical applications: An overview of performance”, J. Mater. Res. Technol., 2:4 (2013), 340–350 | DOI

[22] Jong B. H. W. S., Beerkens R. G. C., Nijnatten P. A., Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH Co. KGaA, 2000, 88 pp. | DOI

[23] Dobrovinskaya E. R., Lytvynov L. A., Pishchik V., Sapphire: material, manufacturing, applications, Springer, New York, 2009, 400 pp.