@article{VTGU_2017_48_a8,
author = {A. Yu. Smolin and G. M. Eremina},
title = {Numerical study of the influence of substrate material on deformation and fracture of the coating{\textendash}substrate system},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {91--106},
year = {2017},
number = {48},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/}
}
TY - JOUR AU - A. Yu. Smolin AU - G. M. Eremina TI - Numerical study of the influence of substrate material on deformation and fracture of the coating–substrate system JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 91 EP - 106 IS - 48 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/ LA - ru ID - VTGU_2017_48_a8 ER -
%0 Journal Article %A A. Yu. Smolin %A G. M. Eremina %T Numerical study of the influence of substrate material on deformation and fracture of the coating–substrate system %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 91-106 %N 48 %U http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/ %G ru %F VTGU_2017_48_a8
A. Yu. Smolin; G. M. Eremina. Numerical study of the influence of substrate material on deformation and fracture of the coating–substrate system. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 91-106. http://geodesic.mathdoc.fr/item/VTGU_2017_48_a8/
[1] Oliver W. C., Farr G. M., “Measurement of hardness and elastic modulus by instrumented indentation: Advanced in understanding and refinements to methodology”, J. Mater. Res., 19:1 (2004), 73–78 | DOI
[2] Shugurov A. R., Panin A. V., Shesterikov E. V., “Sclerometric study of galvanic AuNi and AuCo coatings”, Technical Physics Letters, 37:3 (2011), 223–225 | DOI
[3] Lamovec J., Jovic V., Aleksic R., Radojevic V., “Micromechanical and structural properties of nickel coatings electrodeposited on two different substrates”, J. Serb. Chem. Soc., 74:7 (2009), 817–831 | DOI
[4] Jeng Y.-R., Tan C.-M., Su C. C., Cheng S.-C., Cheng C.-Y., “Experimental study on the nanoindentation of thin copper films from deep submicron to nano-scale”, J. Mechanics, 28 (2012), 507–511 | DOI
[5] Vlachos D. E., Markopoulos Y. P., Kostopoulos V., “3-D Modeling of nanoindentation experiment on a coating-substrate system”, Computational Mechanics, 27 (2001), 138–144 | DOI | Zbl
[6] Gamonpilas C., Busso E. P., “On the effect of substrate properties on the indentation behaviour of coated systems”, Materials Science and Engineering, A 380 (2004), 52–61 | DOI
[7] Ronkainen H., Holmberg K., Laukkanen A., et al., “The effect of coating properties on the performance of a-C:H and TA-C films”, Tribologia, 31:3–4 (2012), 3–35
[8] Sukumar N., Chopp D. L., Moran B., “Extended finite element method and fast marching method for three-dimensional fatigue crack propagation”, Engineering Fracture Mechanics, 70 (2003), 29–48 | DOI
[9] Perzynski K., Madej L., “Numerical modeling of fracture during nanoindentation of the TiN coatings obtained with the PLD process”, Bulletin of the Polish Academy of Science, 61:4 (2013), 973–978 | DOI
[10] Abdul-Baqi A., “Indentation-induced interface delamination of a strong film on a ductile substrate”, Thin Solid Films, 381 (2001), 143–154 | DOI
[11] Shilko E. V., Psakhie S. G., Schmauder S., et al., “Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure”, Comp. Mater. Sci., 102 (2015), 267–285 | DOI
[12] Cundall P. A., Strack D. L., “A discrete numerical model for granular assemblies”, Geotechnique, 29:1 (1979), 47–165 | DOI
[13] Potyondy D. O., Cundall P. A., “A bonded-particle model for rock”, Int. J. Rock Mech. Min. Sci., 41 (2004), 1329–1364 | DOI
[14] Psakhie S. G., Shilko E. V., Horie Y., et al., “Development of a formalism of movable cellular automaton method for numerical modeling of fracture of heterogeneous elastic-plastic materials”, Frattura ed Integrita Strutturale, 24 (2013), 26–59 | DOI
[15] Levashov E. A., Shtanskiy D. V., Kiryukhantsev-Korneev F. V., Petrzhik M. I., Tyurina M. Ya., Sheveyko A. N., “Multifunctional nanostructured coatings: Formation, structure, and the uniformity of measuring their mechanical and tribological properties”, Russian Metallurgy (Metally), 2010, no. 10, 917–935 | DOI
[16] Levashov E. A., Petrzhik M. I., Kiryukhantsev-Korneev F. V., Shtanskiy D. V., Prokoshkin S. D., Gunderov D. V., Sheveyko A. N., Korotitskiy A. V., Valiev R. Z., “Structure and mechanical behavior during indentation of biocompatible nanostructure titanium alloys and coatings”, Metallurgist, 56:5–6 (2012), 395–407 | DOI
[17] Levashov E. A., Petrzhik M. I., Kiryukhantsev-Korneev F. V., et al., “Nanostructured titanium alloys and multicomponent bioactive films: Mechanical behavior at indentation”, Materials Science and Engineering, 570 (2013), 51–62 | DOI
[18] Smolin A. Yu., Eremina G. M., Sergeev V. V., Shil'ko E. V., Psakhie S. G., “Threedimensional MCA simulation of elastoplastic deformation and fracture of coatings in contact interaction with a rigid indenter”, Physical Mesomechanics, 17:4 (2014), 292–303 | DOI
[19] Giannakpoulos A. E., Suresh S., “Determination of elastoplasic properties by instrumented sharp indentation”, Scripta Materialia, 40:10 (1999), 1191–1198 | DOI
[20] Bychkova M. Ya., Creation of state standard samples and measurement techniques for elastic modulus and friction coefficient in order to control and certificate nanostructured coatings, Dissertation for Cand.Tech. Sciences, M., 2015, 131 pp.
[21] Elias C. N., Meyers M. A., Valiev R. Z., Monteiro S. N., “Ultrafine grained titanium for biomedical applications: An overview of performance”, J. Mater. Res. Technol., 2:4 (2013), 340–350 | DOI
[22] Jong B. H. W. S., Beerkens R. G. C., Nijnatten P. A., Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH Co. KGaA, 2000, 88 pp. | DOI
[23] Dobrovinskaya E. R., Lytvynov L. A., Pishchik V., Sapphire: material, manufacturing, applications, Springer, New York, 2009, 400 pp.