Keywords: sudden contraction, stationary flow, relaxation method, Reynolds number, sweep method.
@article{VTGU_2017_48_a3,
author = {E. I. Borzenko and K. E. Ryltseva and O. Yu. Frolov and G. R. Shrager},
title = {Calculation of the local resistance coefficient of viscous incombressible fluid flow in a pipe with sudden contraction},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {36--48},
year = {2017},
number = {48},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_48_a3/}
}
TY - JOUR AU - E. I. Borzenko AU - K. E. Ryltseva AU - O. Yu. Frolov AU - G. R. Shrager TI - Calculation of the local resistance coefficient of viscous incombressible fluid flow in a pipe with sudden contraction JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 36 EP - 48 IS - 48 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_48_a3/ LA - ru ID - VTGU_2017_48_a3 ER -
%0 Journal Article %A E. I. Borzenko %A K. E. Ryltseva %A O. Yu. Frolov %A G. R. Shrager %T Calculation of the local resistance coefficient of viscous incombressible fluid flow in a pipe with sudden contraction %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 36-48 %N 48 %U http://geodesic.mathdoc.fr/item/VTGU_2017_48_a3/ %G ru %F VTGU_2017_48_a3
E. I. Borzenko; K. E. Ryltseva; O. Yu. Frolov; G. R. Shrager. Calculation of the local resistance coefficient of viscous incombressible fluid flow in a pipe with sudden contraction. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 36-48. http://geodesic.mathdoc.fr/item/VTGU_2017_48_a3/
[1] Fan C. T., Hwang C. L., “Bibliography of hydrodynamic entrance region flow”, Kansas State University Bulletin, 50:3 (1966)
[2] Boger D. V., “Circular entry flows of inelastic and viscoelastic fluids”, Advances in Transport Processes, 2 (1982), 43–104
[3] Durst F., Loy T., “Investigations of laminar flow in a pipe with sudden contraction of cross sectional area”, Computers Fluids, 13:1 (1985), 15–36 | DOI | Zbl
[4] White S. A., Baird D. G., “The importance of extensional flow properties on planar entry flow patterns of polymer melts”, J. Non-Newtonian Fluid Mechanics, 20 (1986), 93–101 | DOI
[5] Evans R. E., Walters K., “Further remarks on the lip-vortex mechanism of vortex enhancement in planar-contraction flows”, J. Non-Newtonian Fluid Mechanics, 32 (1989), 95–105 | DOI
[6] Rothstein J. P., McKinley G. H., “The axisymmetric contraction-expansion: the role of extensional rheology on vortex growth dynamics and the enhanced pressure drop”, J. Non-Newtonian Fluid Mechanics, 98 (2001), 33–63 | DOI | Zbl
[7] White S. A., Baird D. G., “Numerical simulation studies of the planar entry flow of polymer melts”, Journal of Non-Newtonian Fluid Mechanics, 30 (1988), 47–71 | DOI
[8] Mompean G., Deville M., “Unsteady finite volume simulation of Oldroyd-B fluid through a three-dimensional planar contraction”, J. Non-Newtonian Fluid Mechanics, 72 (1997), 253–279 | DOI
[9] Walters K., Webster M. F., “The distinctive CDF challenges of computational rheology”, Int. J. Numerical Methods in Fluids, 43 (2003), 577–596 | DOI | MR | Zbl
[10] Astarita G., Greco G., “Excess pressure drop in laminar flow through sudden contraction”, Ind. Eng. Chem. Fundamentals, 7:1 (1968), 27–31 | DOI
[11] Sylvester N. D., Rosen S. L., “Laminar flow in the entrance region of a cylindrical tube”, AICHE Journal, 16:6 (1970), 964–966 | DOI
[12] Boger D. V., “Viscoelastic flows through contractions”, Annual Reviews. Fluid Mechanics, 19 (1987), 157–182 | DOI
[13] Sisavath S., Jing X., Pain C. C., Zimmerman R. W., “Creeping flow through axisymmetric sudden contraction or expansion”, J. Fluids Eng. (Trans. ASME), 124:1 (2002), 273–278 | DOI
[14] Pienaar V. G., Viscous flow through sudden contractions, Dis., Cape Peninsula University of Technology, 2004, 198 pp.
[15] Roache P. J., Computational Fluid Dynamics, Hermosa, Albuquerque, 1982 | DOI | MR
[16] Godunov S. K., Ryabenkiy V. S., Difference Schemes, Elsevier Science Ltd., North-Holland, 1987 | MR
[17] Yanenko N. N., The Method of Fractional Steps: The Solution of Problems of Mathematical Physics in Several Variables, Springer-Verlag, 1971 | DOI | MR | Zbl
[18] Idel'chik I. E., Handbook of Hydraulic Resistance, Israel Program for Scientific Translations, Jerusalem, 1966
[19] Kochin N. E., Kibel' I.A., Roze N. V., Theoretical Hydromechanics, English translation of 5th Russian ed., Wiley, New York, 1964 | MR | Zbl
[20] Monnet P., Menard C., Sigli D., “Some new aspects of the slow flow of a viscous fluid through an axisymmetric duct expansion or contraction. II: Experimental part”, Appl. Sci. Res., 39 (1982), 233–248 | DOI | Zbl
[21] Boger D., Hur D., Binnington R., “Further observations of elastic effects in tubular entry flows”, Journal of Non-Newtonian Fluid Mechanics, 20 (1986), 31–49 | DOI
[22] Kim-E M. E., Brown R. A., Armstrong R. C., “The roles of inertia and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden contraction”, J. Non-Newtonian Fluid Mech., 13 (1983), 341–363 | DOI
[23] Ajayi K. T., Papadopoulos G., Durst F., Influence of upstream development on the losses incurred by flow past an axisymmetric sudden contraction, AIAA-98-0794, American Institute of Aeronautics and Astronautics, 1998
[24] Christiansen E. B., Kelsey S. J., Carter T. R., “Laminar tube flow through an abrupt contraction”, AlChE Journal, 18:2 (1972), 372–380 | DOI
[25] Perry R. H., Green D. W., Maloney J. O., Perry's chemical engineers' handbook, 7th ed., McGraw-Hill, 1997
[26] Vrentas J. S., Duda J. L., “Flow of a Newtonian fluid through a sudden contraction”, Appl. Sci. Res., 28 (1973), 241–260 | DOI | Zbl
[27] Binding D. M., “An approximate analysis for contraction and converging flows”, Journal of Non-Newtonian Fluid Mechanics, 27:2 (1988), 173–189 | DOI | Zbl