Coefficient inverse problem of control type for elliptic equations with additional integral condition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 17-29
Voir la notice de l'article provenant de la source Math-Net.Ru
Let it be required to minimize the functional
$$
J(\upsilon)=\int_0^1\left|u(0,x_2;\upsilon)-\int_0^1H(x_1,x_2)u(x_1,x_2;\upsilon)dx_1 \right|^2dx_2
$$
on solutions $u(x)=u(x;\upsilon)=u(x_1,x_2;\upsilon)$ of the boundary-value problem
\begin{gather*}
-\sum_{i=1}^2\frac\partial{\partial x_i}\left(\upsilon(x_2)\frac{\partial u}{\partial x_i}\right)+q(x)u=f(x), \quad x\in\Omega,\\
-\upsilon(x_2)\frac{\partial u}{\partial x_1}=g(x), \quad x\in\Gamma_{-1},\\
u(x;\upsilon)=0, \quad x\in\Gamma\setminus\Gamma_{-1},
\end{gather*}
corresponding to all admissible controls in the set
$$
V=\{\upsilon=\upsilon(x_2)\in W_2^1(0,1): 0\leqslant\upsilon(x_2)\leqslant\mu, |\upsilon'(x_2)|\leqslant\mu_1\text{ п.в. на }(0, 1)\},
$$
where $\Omega=\{x=(x_1, x_2): 0$, $\Gamma_{-1}=\{x=(0,x_2): 0$, $H(x_1,x_2)$, $q(x)$, $f(x)$, $g(x)$ are given functions.
In this paper, we consider a coefficient inverse problem of the control type for an elliptic
equation with a quality criterion corresponding to an additional integral condition. The questions
of correctness of the formulation of the inverse problem of the control type are investigated. The
Frechet differentiability of the quality criterion is proved and an expression for its gradient is
found. A necessary optimality condition is established in the form of a variational inequality.
Mots-clés :
elliptic equation
Keywords: inverse problem, integral condition.
Keywords: inverse problem, integral condition.
@article{VTGU_2017_48_a1,
author = {R. K. Tagiev and R. S. Kasimova},
title = {Coefficient inverse problem of control type for elliptic equations with additional integral condition},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {17--29},
publisher = {mathdoc},
number = {48},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/}
}
TY - JOUR AU - R. K. Tagiev AU - R. S. Kasimova TI - Coefficient inverse problem of control type for elliptic equations with additional integral condition JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 17 EP - 29 IS - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/ LA - ru ID - VTGU_2017_48_a1 ER -
%0 Journal Article %A R. K. Tagiev %A R. S. Kasimova %T Coefficient inverse problem of control type for elliptic equations with additional integral condition %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 17-29 %N 48 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/ %G ru %F VTGU_2017_48_a1
R. K. Tagiev; R. S. Kasimova. Coefficient inverse problem of control type for elliptic equations with additional integral condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 17-29. http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/