Coefficient inverse problem of control type for elliptic equations with additional integral condition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 17-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let it be required to minimize the functional $$ J(\upsilon)=\int_0^1\left|u(0,x_2;\upsilon)-\int_0^1H(x_1,x_2)u(x_1,x_2;\upsilon)dx_1 \right|^2dx_2 $$ on solutions $u(x)=u(x;\upsilon)=u(x_1,x_2;\upsilon)$ of the boundary-value problem \begin{gather*} -\sum_{i=1}^2\frac\partial{\partial x_i}\left(\upsilon(x_2)\frac{\partial u}{\partial x_i}\right)+q(x)u=f(x), \quad x\in\Omega,\\ -\upsilon(x_2)\frac{\partial u}{\partial x_1}=g(x), \quad x\in\Gamma_{-1},\\ u(x;\upsilon)=0, \quad x\in\Gamma\setminus\Gamma_{-1}, \end{gather*} corresponding to all admissible controls in the set $$ V=\{\upsilon=\upsilon(x_2)\in W_2^1(0,1): 0<v \leqslant\upsilon(x_2)\leqslant\mu, |\upsilon'(x_2)|\leqslant\mu_1\text{ п.в. на }(0, 1)\}, $$ where $\Omega=\{x=(x_1, x_2): 0, $\Gamma_{-1}=\{x=(0,x_2): 0, $H(x_1,x_2)$, $q(x)$, $f(x)$, $g(x)$ are given functions. In this paper, we consider a coefficient inverse problem of the control type for an elliptic equation with a quality criterion corresponding to an additional integral condition. The questions of correctness of the formulation of the inverse problem of the control type are investigated. The Frechet differentiability of the quality criterion is proved and an expression for its gradient is found. A necessary optimality condition is established in the form of a variational inequality.
Mots-clés : elliptic equation
Keywords: inverse problem, integral condition.
@article{VTGU_2017_48_a1,
     author = {R. K. Tagiev and R. S. Kasimova},
     title = {Coefficient inverse problem of control type for elliptic equations with additional integral condition},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {17--29},
     year = {2017},
     number = {48},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/}
}
TY  - JOUR
AU  - R. K. Tagiev
AU  - R. S. Kasimova
TI  - Coefficient inverse problem of control type for elliptic equations with additional integral condition
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 17
EP  - 29
IS  - 48
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/
LA  - ru
ID  - VTGU_2017_48_a1
ER  - 
%0 Journal Article
%A R. K. Tagiev
%A R. S. Kasimova
%T Coefficient inverse problem of control type for elliptic equations with additional integral condition
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 17-29
%N 48
%U http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/
%G ru
%F VTGU_2017_48_a1
R. K. Tagiev; R. S. Kasimova. Coefficient inverse problem of control type for elliptic equations with additional integral condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 48 (2017), pp. 17-29. http://geodesic.mathdoc.fr/item/VTGU_2017_48_a1/

[1] Tikhonov A. N., “On the solution of ill-posed problems and regularization method”, Dokl. USSR Academy of Sciences, 151:3 (1963), 501–504 | Zbl

[2] Iskenderov A. D., “On the variational formulations of multidimensional inverse problems of mathematical physics”, Dokl. USSR Academy of Sciences, 274:3 (1984), 531–533 | Zbl

[3] Alifanov O. A., Artyukhin E. A., Rumyantsev S. V., Extreme methods of solving ill-posed problems, Nauka, M., 1988

[4] Karchevsky A. L., “Properties the misfit functional for a nonlinear one-dimensional coefficient hyperbolic inverse problem”, J. Inverse Ill-Posed. Probl., 5:2 (1997), 139–165 | DOI | MR

[5] Kabanikhin S. I., Iskakov K. T., “Justification of the steepest descent method for the integral statement of an inverse problem for a hyperbolic equation”, Sib. Math. J., 42:3 (2001), 478–494 | DOI | MR | Zbl

[6] Tagiev R. K., “A Variational Method for Solving the Inverse Problem of Determining the Coefficients of Elliptic Equations”, International Conference “Inverse Problems of Theoretical and Mathematical Physics” (Azerbaijan, Sumgait, 2003), 29–31

[7] Iskenderov A. D., Hamidov R. A., “Optimal identification of coefficients of elliptic equations”, Automation and Remote Control, 72:12 (2011), 2553–2562 | DOI | MR | Zbl

[8] Iskenderov A. D., Tagiyev R. K., “Variational method solving the problem of identification of the coefficients of quasilinear parabolic problem”, The 7th International Conference “Inverse Problems: modelling and Simulation” (IPMS - 2014) (May 26–31, 2014), 31 | Zbl

[9] Tagiyev R. K., Kasumov R. A., “On the optimization formulation of a coefficient inverse problem for a parabolic equation with an additional integral condition”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika - Tomsk State University Journal of Mathematics and Mechanics, 2017, no. 45, 49–59 | DOI

[10] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasilinear equations of the elliptic type, Nauka, M., 1973

[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and quasilinear equations of the parabolic type, Nauka, M., 1967

[12] Tagiyev R. K., “On Optimal Control by Coefficients in an Elliptic Equations”, Diff. Equat., 47:6 (2011), 877–886 | DOI | MR | Zbl

[13] Tagiyev R. K., “Optimal control problems for elliptic equations with controls in coefficients”, Trans. Nat. Acad. of Sci. of Azerb. Ser. Phys.-Techn. and Math. Sci., 23:4 (2003), 251–260 | MR

[14] Casado D., Couce C., Martin G., “Optimality conditions for nonconvex multistate control problems in the coefficients”, SIAM. J. Control and Optimiz., 43:1 (2004), 216–239 | DOI | MR | Zbl

[15] Vasilyev F. P., Methods for solving extreme problems, Nauka, M., 1981