Numerical investigation of the air heat-mass transfer in the chamber of dry storage for spent nuclear fuel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 47 (2017), pp. 75-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The numerical investigation of the wind load effect on the thermal regime in a dry storage for spent nuclear fuel has been carried out in this paper. The equations of gas dynamics written in the quasi-2D approximation have been solved to determine the flow fields in the storage chamber. Solution of the Euler equations, which govern the motion of a compressible fluid, has been implemented using the first order Godunovэs method. The heat exchange between the air and storage casks is taken into account via the right-hand side of the energy equation. The flow field in the storage chamber has been shown to be stable with respect to the wind load of 20 m/s. The wind load has a positive effect on the thermal regime of the storage chamber of considered design. The time for establishing the flow field in the storage chamber after exposure to the wind load completed is equal to 150 s.
Keywords: heat-mass transfer processes, wind load, dry storage, spent nuclear fuel, numerical simulation.
@article{VTGU_2017_47_a7,
     author = {A. Yu. Krainov and L. L. Min'kov and I. N. Seelev and E. R. Shrager},
     title = {Numerical investigation of the air heat-mass transfer in the chamber of dry storage for spent nuclear fuel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {75--86},
     year = {2017},
     number = {47},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_47_a7/}
}
TY  - JOUR
AU  - A. Yu. Krainov
AU  - L. L. Min'kov
AU  - I. N. Seelev
AU  - E. R. Shrager
TI  - Numerical investigation of the air heat-mass transfer in the chamber of dry storage for spent nuclear fuel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 75
EP  - 86
IS  - 47
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_47_a7/
LA  - ru
ID  - VTGU_2017_47_a7
ER  - 
%0 Journal Article
%A A. Yu. Krainov
%A L. L. Min'kov
%A I. N. Seelev
%A E. R. Shrager
%T Numerical investigation of the air heat-mass transfer in the chamber of dry storage for spent nuclear fuel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 75-86
%N 47
%U http://geodesic.mathdoc.fr/item/VTGU_2017_47_a7/
%G ru
%F VTGU_2017_47_a7
A. Yu. Krainov; L. L. Min'kov; I. N. Seelev; E. R. Shrager. Numerical investigation of the air heat-mass transfer in the chamber of dry storage for spent nuclear fuel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 47 (2017), pp. 75-86. http://geodesic.mathdoc.fr/item/VTGU_2017_47_a7/

[1] Radchenko M. V., Zubkov A. A., Krektunov O. P., Naumenko N. A., Kassirov S. V., Experimental and theoretical investigation of the air flow and heat exchange based on the SSF-2 storage models, Engineering Center of Nuclear Containers, St. Petersburg, 2011

[2] Alyokhina S., “Investigation of thermal processes at dry storage of spent nuclear fuel”, The International Conference on Management of Spent Fuel from Nuclear Power Reactors, IAEA (Vienna, 31 May–4 June 2010), Vienna, Austria, 2010

[3] Kalinkin V. I., Shafrova N. P., Kritskiy V. G., Voltukhova T. G., Solution of scientific problems related to the temperature regime of spent nuclear fuel storage

[4] Graves F. C., Geronimo M. R., Graves G. A., Centralized Dry Storage of Nuclear Fuel, , The Battle Group, 2012 http://www.brattle.com/news-and-knowledge/publications/archive/2012 | Zbl

[5] Loitsyansky L. G., Mechanics of fluid and gas, Pergamon Press, London, 1966

[6] Landau L. D., Lifshitz E. M., Fluid Mechanics, Pergamon Press, London, 1987

[7] Lipanov A. M., Theoretical Hydromechanics of Newtonian fluids, Nauka, M., 2011, 551 pp.

[8] Lipanov A. M., Vasenin I. M., Shrager E. R., Krainov A. Y., “A method of direct numerical simulation of turbulent flows of viscous heat-conducting gas in curved channels”, Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 5(25), 59–69

[9] Shih T. M., Numerical Heat Transfer, Hemisphere Publishing Corporation, New York, 1984

[10] Isachenko V. P., Sukomel A. S., Osipova V. A., Heat Transfer, University Press of the Pacific, 2000

[11] Kulikovskiy A. G., Pogorelov N. V., Semenov A. Yu., Mathematical aspects of numerical solution of hyperbolic systems, Fizmatlit, M., 2002, 608 pp.

[12] Peyret R., Taylor Th. D., Computational Methods for Fluid Flow, Springer-Verlag, New-York, 1983 | MR | Zbl

[13] Samarskiy A. A., Vabishchevich P. N., Computational Heat Transfer, Editorial URSS, M., 2003, 784 pp.

[14] Nigmatulin R. I., Dynamics of Multiphase Media, v. 1, Hemisphere Publishing Corporation, New York, 1991

[15] Belotserkovskiy O. M., Andruschcenko V. A., Shevelev Yu. D., Dynamics of spatial vortex flows in an inhomogeneous atmosphere, Yanus-K, M., 2000

[16] Handbook of Heat Exchangers, v. 1, Energoatomizdat, M., 1987

[17] Godunov S. K., Numerical Solution of Multidimensional Problems in Gasdynamics, Nauka, M., 1976