@article{VTGU_2017_47_a1,
author = {S. Jambaa and T. V. Kasatkina and A. M. Bubenchikov},
title = {Application of {Kufarev} method to problem of subsoil waters movement under hydraulic engineering constructions},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {15--21},
year = {2017},
number = {47},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_47_a1/}
}
TY - JOUR AU - S. Jambaa AU - T. V. Kasatkina AU - A. M. Bubenchikov TI - Application of Kufarev method to problem of subsoil waters movement under hydraulic engineering constructions JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 15 EP - 21 IS - 47 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_47_a1/ LA - ru ID - VTGU_2017_47_a1 ER -
%0 Journal Article %A S. Jambaa %A T. V. Kasatkina %A A. M. Bubenchikov %T Application of Kufarev method to problem of subsoil waters movement under hydraulic engineering constructions %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 15-21 %N 47 %U http://geodesic.mathdoc.fr/item/VTGU_2017_47_a1/ %G ru %F VTGU_2017_47_a1
S. Jambaa; T. V. Kasatkina; A. M. Bubenchikov. Application of Kufarev method to problem of subsoil waters movement under hydraulic engineering constructions. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 47 (2017), pp. 15-21. http://geodesic.mathdoc.fr/item/VTGU_2017_47_a1/
[1] Kufarev P. P., “A method for determining the parameters of the Schwarz–Christoffel integral”, Dokl. Akad. Nauk SSSR, 57:6 (1947), 535–537 | Zbl
[2] Kolesnikov I. A., “Determination of accessory parameters for mapping onto a numerable polygon”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2(28), 18–28
[3] Kopanev S. A., Kopaneva L. S., “The Formula type formula Christoffel–Schwarz for numerable polygon”, Tomsk State University Journal, 2003, no. 280, 52–54
[4] Chistyakov Yu. V., A numerical method for determining the function that conformally mapping a circle onto polygons, Physics and Mathematics Cand. Diss., Tomsk, 1953
[5] Baybarin B. G., On One Numerical method of determining the parameters of the Schwarz derivative for a function that conformally mapping the half-plane onto a circular area, Physics and Mathematics Cand. Diss., Tomsk, 1966, 97 pp.
[6] Nakipov N. N., Nasyrov S. R., “A parametric method of finding accessory parameters for the generalized Schwarz–Christoffel integrals”, Uchenye zapiski Kazanskogo universiteta. Seriya Fiziko-matematicheskie nauki, 158:2 (2016), 202–220
[7] Nasyrov S. R., Nizamieva L. Yu., “Finding of Accessory Parameters for Mixed Inverse Boundary Value Problem with Polygonal Known Part of Boundary”, Izvestiya Saratovskogo universiteta. Novaya seriya-Izvestiya of Saratov University. New Series, 11:4 (2011), 34–40 | Zbl
[8] Gutlyanskii V. Y., Zaidan A. O., “On conformal mapping of polygonal regions”, Ukrainian Mathematical Journal, 45:11 (1993), 1669–1680 | DOI | MR | Zbl
[9] Sobolev V. V., “The numeric method of the conformal mapping of the half-plane into self with the hydrodynamics normalization”, Tomsk State University Journal, 2003, no. 280, 81–85
[10] Jambaa S., Kasatkina T. V., Bubenchikov A. M., “On the determination of constants in the Schwarz–Christoffel integral by P. P. Kufarev's method”, Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 5(43), 21–27 | DOI
[11] Fil'chakov P. F., Approximate methods of conformal mappings, Naukova Dumka, Kiev, 1964, 530 pp.
[12] Polubarinova-Kochina P. Ya., Theory of ground water movement, Nauka, M., 1977, 663 pp.
[13] Pavlovsky N. N., Coll. w., v. II, Theory of ground water movement under hydraulic structures and its main applications, Izd-vo Akad. Nauk SSSR, M.–L., 1956, 352 pp.