On an algorithm for calculating optimal strategies on an infinite time interval
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 47 (2017), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, a system where the interval between check times is discrete and constant is considered. The probability of failure for one element between check times is equal to $p$. The redundancy criterion satisfies the following equation: \begin{equation} T(k,r)=\sum_{i=0}^{k-m}C_k^i p^{k-i}q^i T(r-i)+1,\tag{1} \end{equation} which is used for finding the function $K_0(r)$. Then, previous results related to properties of optimal strategies are stated. The main result of the paper is the solution of the problem about saving the reserve consumption. In the case $m=1$, this problem was solved by the author earlier. To solve this problem in the general case, the inequality \begin{equation} T(m+2,r)-T(m+1,r)\leqslant 0\tag{2} \end{equation} is used. Since $T(r)$ can be found explicitly from the conditions of the problem, inequality (2) is easy resolved. Therefore, the reserve interval $\left[m+1,m+2+\left[\frac{\ln C}{\ln A}\right]\right]$, where $K_0(r)=m+1$, is obtained. The algorithm for optimal strategy computing consists of the following steps: for $r=m$, we have $K_0(m)=m$ and $T(m)=p^m/(1-p^m)$. then, if we find $K_0(m+1)$, $K_0(m+2)$, ..., and $K_0(r-1)$ to define $K_0(r)$, it is sufficient to compare $f(K_0(r-1),r)\geqslant f(K_0(r-1)+1,r)$, where $f(k,r)=\frac{1}{1-p^k}\left(\sum\limits_{i=1}^{k-m}C_k^i p^{k-i}q^i T(r-i)+1\right)$. Results of the numerical simulation are represented in the final section of the paper.
Keywords: mean time between failures, element failure, system, reliability, redundancy strategy, optimal strategy, redundancy criterion.
@article{VTGU_2017_47_a0,
     author = {V. N. Gubin},
     title = {On an algorithm for calculating optimal strategies on an infinite time interval},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--14},
     year = {2017},
     number = {47},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_47_a0/}
}
TY  - JOUR
AU  - V. N. Gubin
TI  - On an algorithm for calculating optimal strategies on an infinite time interval
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 5
EP  - 14
IS  - 47
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_47_a0/
LA  - ru
ID  - VTGU_2017_47_a0
ER  - 
%0 Journal Article
%A V. N. Gubin
%T On an algorithm for calculating optimal strategies on an infinite time interval
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 5-14
%N 47
%U http://geodesic.mathdoc.fr/item/VTGU_2017_47_a0/
%G ru
%F VTGU_2017_47_a0
V. N. Gubin. On an algorithm for calculating optimal strategies on an infinite time interval. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 47 (2017), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2017_47_a0/

[1] Alekseev O. G., “On a problem of optimum redundancy”, Izv. Acad. Nauk SSSR Tekh. Kibernetika, 1967, no. 1, 44–47

[2] Gertsbakh I. B., “On optimum control for triggering reserve elements”, Izv. Acad. Nauk SSSR Tekh. Kibernetika, 1966, no. 5, 75–80

[3] Raykin A. L., “Maneuvering by equipment duplication in real systems”, Proceedings of the 3rd All-Union Conference on Automatic Control (Odessa, 1965), v. 5, Engineering Tools of Automatics, Nauka, M., 1967, 94

[4] Konev V. V., “On optimum triggering of reserve elements”, Izv. Acad. Nauk SSSR. Tekh. Kibernetika, 1974, no. 4, 75–83

[5] Konev V. V., “On optimum program triggering of reserve elements”, Izv. Acad. Nauk SSSR. Tekh. Kibernetika, 1975, no. 3, 109–117

[6] Konev V. V., Ovchinnikov A. V., “Optimum redundancy of a group of homogeneous components”, Izv. Acad. Nauk SSSR. Tekh. Kibernetika, 1976, no. 4, 75–84

[7] Pestov G. G., Ushakova L. V., “Studying optimum strategies in the problem of dynamic redundancy of elements”, Izv. Acad. Nauk SSSR. Tekh. Kibernetika, 1973, no. 5, 76–82

[8] Pestov G. G., Ushakova L. V., “Studying optimum strategies in the problem of dynamic redundancy”, Izv. Acad. Nauk SSSR. Tekh. Kibernetika, 1973, no. 5, 69–72

[9] Raykin A. L., Elements of the theory of reliability of technical systems, Sov. Radio, M., 1978, 280 pp.

[10] Tomilenko V. A., “On a problem of dynamic redundancy”, Izv. Acad. Nauk SSSR. Tekh. Kibernetika, 1975, no. 4, 93–100

[11] Chistyakov V. P., A course of the probability theory, Agar, M., 2000, 256 pp.

[12] Gubin V. N., Pestov G. G., “On a class of reserved devices”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 4(30), 14–23

[13] Gubin V. N., “On the average time of failure-free operation of a reserved system”, All-Russian Youth Scientific Conference “All Facets of Mathematics” (Tomsk, April 25–29, 2016), Tomsk, 2016, 173–180

[14] Gubin V. N., “On optimal reservation in an infinite interval”, Sovremennye problemy nauki i obrazovaniya — Current Issues of Science and Education, 2014, no. 4

[15] Gubin V. N., Travkina V. V., “Two problems of dynamic redundancy”, Tomsk State University Journal of Mathematics and Mechanics, 2013, no. 5(25), 5–12