On an algorithm for calculating optimal strategies on an infinite time interval
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 47 (2017), pp. 5-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, a system where the interval between check times is discrete and constant is considered. The probability of failure for one element between check times is equal to $p$. The redundancy criterion satisfies the following equation:
\begin{equation}
T(k,r)=\sum_{i=0}^{k-m}C_k^i p^{k-i}q^i T(r-i)+1,\tag{1}
\end{equation}
which is used for finding the function $K_0(r)$.
Then, previous results related to properties of optimal strategies are stated. The main result of
the paper is the solution of the problem about saving the reserve consumption. In the case $m=1$,
this problem was solved by the author earlier. To solve this problem in the general case, the
inequality
\begin{equation}
T(m+2,r)-T(m+1,r)\leqslant 0\tag{2}
\end{equation}
is used. Since $T(r)$ can be found explicitly from the conditions of the problem, inequality (2) is
easy resolved. Therefore, the reserve interval $\left[m+1,m+2+\left[\frac{\ln C}{\ln A}\right]\right]$, where $K_0(r)=m+1$, is
obtained. The algorithm for optimal strategy computing consists of the following steps:
for $r=m$, we have $K_0(m)=m$ and $T(m)=p^m/(1-p^m)$.
then, if we find $K_0(m+1)$, $K_0(m+2)$, …, and $K_0(r-1)$ to define $K_0(r)$, it is sufficient to
compare $f(K_0(r-1),r)\geqslant f(K_0(r-1)+1,r)$, where $f(k,r)=\frac{1}{1-p^k}\left(\sum\limits_{i=1}^{k-m}C_k^i p^{k-i}q^i T(r-i)+1\right)$.
Results of the numerical simulation are represented in the final section of the paper.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mean time between failures, element failure, system, reliability, redundancy strategy,
optimal strategy, redundancy criterion.
                    
                  
                
                
                @article{VTGU_2017_47_a0,
     author = {V. N. Gubin},
     title = {On an algorithm for calculating optimal strategies on an infinite time interval},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--14},
     publisher = {mathdoc},
     number = {47},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_47_a0/}
}
                      
                      
                    TY - JOUR AU - V. N. Gubin TI - On an algorithm for calculating optimal strategies on an infinite time interval JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 5 EP - 14 IS - 47 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2017_47_a0/ LA - ru ID - VTGU_2017_47_a0 ER -
V. N. Gubin. On an algorithm for calculating optimal strategies on an infinite time interval. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 47 (2017), pp. 5-14. http://geodesic.mathdoc.fr/item/VTGU_2017_47_a0/
