Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 46 (2017), pp. 24-35 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this work, integral representations of the manifold of solutions in terms of two arbitrary constants have been found for a model first order integro-differential equation with a singular point in the kernel. Although the kernel of this equation is not of the Fredholm type, the solution of this equation in the class of functions vanishing at $x=a$ has been found in an explicit form. It has been shown that the solution of the equation contains either two arbitrary constants or one arbitrary constant. Moreover, the case where the integro-differential equation has a unique solution has been revealed. For the integro-differential equation, analogs of the Fredholm theorem have been constructed. The existence of arbitrary constants in the general solution gives us chance to investigate some initial or boundary value problems for this equation. However, it is necessary to note that, in contrast to usual problems, these problems in our case are posed with different weights. Correctness of the obtained results is verified with the help of detailed solutions of examples. The method can be used for solving higher order model and non-model integro-differential equations with singular and supersingular kernels.
Keywords: model integro-differential equation, boundary singular points, manifold of solutions, integral representation, integral equation, characteristic equation.
@article{VTGU_2017_46_a3,
     author = {S. K. Zaripov},
     title = {Construction of an analog of the {Fredholm} theorem for a class of model first order integro-differential equations with a singular point in the kernel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {24--35},
     year = {2017},
     number = {46},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/}
}
TY  - JOUR
AU  - S. K. Zaripov
TI  - Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 24
EP  - 35
IS  - 46
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/
LA  - ru
ID  - VTGU_2017_46_a3
ER  - 
%0 Journal Article
%A S. K. Zaripov
%T Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 24-35
%N 46
%U http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/
%G ru
%F VTGU_2017_46_a3
S. K. Zaripov. Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 46 (2017), pp. 24-35. http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/

[1] Volterra V., Theory of Functionals and of Integral and Integro-Differential Equations, Blackie Son, 1930 | MR | Zbl

[2] Nekrasov A. I., On a class of linear integro-differential equations, GTTI, M.–L., 1934

[3] Veynberg M. M., “Integro-differential equations”, Itogi nauki. Ser. Mat. anal. Teor. veroyatn. Regulir., 1964, 5–37

[4] Vekua I. N., “On the Prandtl integrodifferential equation”, Prikl. matem. i mekh., 9:2 (1945), 143–150 | Zbl

[5] Magnaradze L. G., “On a system of linear singular integro-differential equations and on a Riman linear boundary value problem”, Soobsh. AN Gruz SSR, 5:1 (1943), 3–9

[6] Magnaradze L. G., “On a new integral equation of the airplane wing theory”, Soobsh. AN Gruz SSR, 3:6 (1942), 503–508 | Zbl

[7] Bianca C., Ferrara M., Guerrini L., “The asymptotic limit of an integro-differential equation modelling complex systems”, Izvestiya: Mathematics, 78:6 (2014), 1105–1119 | DOI | DOI | MR | Zbl

[8] Falaleev M. V., “Singular integro-differential equations of a special type in Banach spaces and their applications”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 6:4 (2013), 128–137 | Zbl

[9] Falaleev M. V., “Degenerate integro-differential convolution type equations in Banach spaces”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 17 (2016), 77–85

[10] Durdiev D. K., “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Differential Equations, 44:7 (2008), 893–899 | DOI | MR | Zbl

[11] Safarov Zh. Sh., “Estimates of stability of some inverse problems solutions for integro-differential equations”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 3, 75–82 | DOI

[12] Yuldashev T. K., “Inverse problem for a nonlinear integro-differential equation of the third order”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 9/1, 58–66

[13] Bobodzhanov A. A., Safonov V. F., “The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels”, Matem. Sb., 204:7 (2013), 979–1002 | DOI | DOI | MR | Zbl

[14] Bobodzhanov A. A., Safonov V. F., “A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order”, Izv. RAN. Ser. Mat., 80:2 (2016), 285–298 | DOI | DOI | MR | Zbl

[15] Taliev A. A., “Stability loss protraction for singularly perturbed equations with continuous right-hand sides”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 4(30), 36–42

[16] Tursunov D. A., Erkebaev U. Z., “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary”, Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 1(39), 42–52

[17] Rajabov N., Volterra type integral equations with boundary and interior fixed singularity and super-singularity kernels and their applications, Lap Lambert, Germany, 2011

[18] Radjabov N., Radjabova L. N., Repin O. A., “On a class of two-dimensional adjoint integral equations of Volterra type”, Differential Equations, 47:9 (2011), 1333–1343 | DOI | MR | Zbl

[19] Zaripov S. K., “On a class of the first order model integro-differential equation with a singular point in the kernel”, Vestnik Tadzhikskogo natsionalnogo universiteta, 2015, no. 1/3(164), 27–32

[20] Zaripov S. K., “On a class of the first order model integro-differential equation with a super-singular point in the kernel”, Vestnik Tadzhikskogo natsionalnogo universiteta, 2015, no. 1/6(191), 6–12