@article{VTGU_2017_46_a3,
author = {S. K. Zaripov},
title = {Construction of an analog of the {Fredholm} theorem for a class of model first order integro-differential equations with a singular point in the kernel},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {24--35},
year = {2017},
number = {46},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/}
}
TY - JOUR AU - S. K. Zaripov TI - Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 24 EP - 35 IS - 46 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/ LA - ru ID - VTGU_2017_46_a3 ER -
%0 Journal Article %A S. K. Zaripov %T Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 24-35 %N 46 %U http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/ %G ru %F VTGU_2017_46_a3
S. K. Zaripov. Construction of an analog of the Fredholm theorem for a class of model first order integro-differential equations with a singular point in the kernel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 46 (2017), pp. 24-35. http://geodesic.mathdoc.fr/item/VTGU_2017_46_a3/
[1] Volterra V., Theory of Functionals and of Integral and Integro-Differential Equations, Blackie Son, 1930 | MR | Zbl
[2] Nekrasov A. I., On a class of linear integro-differential equations, GTTI, M.–L., 1934
[3] Veynberg M. M., “Integro-differential equations”, Itogi nauki. Ser. Mat. anal. Teor. veroyatn. Regulir., 1964, 5–37
[4] Vekua I. N., “On the Prandtl integrodifferential equation”, Prikl. matem. i mekh., 9:2 (1945), 143–150 | Zbl
[5] Magnaradze L. G., “On a system of linear singular integro-differential equations and on a Riman linear boundary value problem”, Soobsh. AN Gruz SSR, 5:1 (1943), 3–9
[6] Magnaradze L. G., “On a new integral equation of the airplane wing theory”, Soobsh. AN Gruz SSR, 3:6 (1942), 503–508 | Zbl
[7] Bianca C., Ferrara M., Guerrini L., “The asymptotic limit of an integro-differential equation modelling complex systems”, Izvestiya: Mathematics, 78:6 (2014), 1105–1119 | DOI | DOI | MR | Zbl
[8] Falaleev M. V., “Singular integro-differential equations of a special type in Banach spaces and their applications”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 6:4 (2013), 128–137 | Zbl
[9] Falaleev M. V., “Degenerate integro-differential convolution type equations in Banach spaces”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 17 (2016), 77–85
[10] Durdiev D. K., “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Differential Equations, 44:7 (2008), 893–899 | DOI | MR | Zbl
[11] Safarov Zh. Sh., “Estimates of stability of some inverse problems solutions for integro-differential equations”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, no. 3, 75–82 | DOI
[12] Yuldashev T. K., “Inverse problem for a nonlinear integro-differential equation of the third order”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 9/1, 58–66
[13] Bobodzhanov A. A., Safonov V. F., “The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels”, Matem. Sb., 204:7 (2013), 979–1002 | DOI | DOI | MR | Zbl
[14] Bobodzhanov A. A., Safonov V. F., “A problem with inverse time for a singularly perturbed integro-differential equation with diagonal degeneration of the kernel of high order”, Izv. RAN. Ser. Mat., 80:2 (2016), 285–298 | DOI | DOI | MR | Zbl
[15] Taliev A. A., “Stability loss protraction for singularly perturbed equations with continuous right-hand sides”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 4(30), 36–42
[16] Tursunov D. A., Erkebaev U. Z., “Asymptotic expansion of the solution of the Dirichlet problem for a ring with a singularity on the boundary”, Tomsk State University Journal of Mathematics and Mechanics, 2016, no. 1(39), 42–52
[17] Rajabov N., Volterra type integral equations with boundary and interior fixed singularity and super-singularity kernels and their applications, Lap Lambert, Germany, 2011
[18] Radjabov N., Radjabova L. N., Repin O. A., “On a class of two-dimensional adjoint integral equations of Volterra type”, Differential Equations, 47:9 (2011), 1333–1343 | DOI | MR | Zbl
[19] Zaripov S. K., “On a class of the first order model integro-differential equation with a singular point in the kernel”, Vestnik Tadzhikskogo natsionalnogo universiteta, 2015, no. 1/3(164), 27–32
[20] Zaripov S. K., “On a class of the first order model integro-differential equation with a super-singular point in the kernel”, Vestnik Tadzhikskogo natsionalnogo universiteta, 2015, no. 1/6(191), 6–12