Separation of methane-helium mixture by porous graphite
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 80-87 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, the permeability of a double layer formed by parallel-laid sheets of sparse graphene is studied theoretically. The performed analysis is based on the Pöschl–Teller intermolecular interaction potential which better describes both the vicinity of the equilibrium position and the distant interactions. The mathematical pores are created by the removal of two consecutive carbon cycles out of the hexagonal structure (twelve atoms of carbon are removed). The pores are uniformly distributed over the graphene sheet and separated from each other by rectilinear hexagonal tapes. The resulting sparse graphene has an average density equal to fourteen atoms per one square nanometer of the sheet area. Despite the essential heterogeneity of the obtained $\mathrm{2D}$ graphene structure, the equivalent uniform layer method developed by the authors is proposed for calculating the permeability of the sparse graphene sheets. This method is based on the Maxwell velocity distribution of the molecules. It allows one to take into account all possible slant-directed blows of molecules on an ultrathin layer. Using this method, the permeability of both monocarbonic layer and, then, double graphene layer were investigated. It is revealed that the permeability of a two-layered membrane increases more than twice in comparison with a one-layer case when the sparse graphene sheets naturally approach each other.
Keywords: molecular dynamics, a Pöschl–Teller potential, the method of equivalent uniform layer, permeability of a double layer.
@article{VTGU_2017_45_a6,
     author = {A. M. Bubenchikov and M. A. Bubenchikov and E. A. Tarasov and O. V. Usenko and A. S. Chelnokova},
     title = {Separation of methane-helium mixture by porous graphite},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {80--87},
     year = {2017},
     number = {45},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_45_a6/}
}
TY  - JOUR
AU  - A. M. Bubenchikov
AU  - M. A. Bubenchikov
AU  - E. A. Tarasov
AU  - O. V. Usenko
AU  - A. S. Chelnokova
TI  - Separation of methane-helium mixture by porous graphite
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 80
EP  - 87
IS  - 45
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_45_a6/
LA  - ru
ID  - VTGU_2017_45_a6
ER  - 
%0 Journal Article
%A A. M. Bubenchikov
%A M. A. Bubenchikov
%A E. A. Tarasov
%A O. V. Usenko
%A A. S. Chelnokova
%T Separation of methane-helium mixture by porous graphite
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 80-87
%N 45
%U http://geodesic.mathdoc.fr/item/VTGU_2017_45_a6/
%G ru
%F VTGU_2017_45_a6
A. M. Bubenchikov; M. A. Bubenchikov; E. A. Tarasov; O. V. Usenko; A. S. Chelnokova. Separation of methane-helium mixture by porous graphite. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 80-87. http://geodesic.mathdoc.fr/item/VTGU_2017_45_a6/

[1] Kaplan I. G., Introduction to the theory of intermolecular interactions, Nauka, M., 1982, 312 pp.

[2] Galashev A. E., Polukhin V. A., “Computer study of the physical properties of a copper film on a heated graphene surface”, Physics of the Solid State, 55:8 (2013), 1733–1738 | DOI

[3] Oluwajobi A., Chen X., “The effect of interatomic potentials on the molecular dynamics simulation of nanometric machining”, Int. J. Automation Computing, 8:3 (2011), 326–332 | DOI

[4] Bubenchikov M. A., Bubenchikov A. M., Usenko O. V., Ukolov A. V., “About a permeability of graphene pores”, IOP Conference Series: Materials Science and Engineering, 87 (2015), 012111-1–012111-4 | DOI