Thermal conductivity of the bubble gas-liquid media with a high concentration
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 69-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that Maxwell's equation (the Clausius–Mossotti formula) is widely used for calculating the electrical and thermal conductivity, dielectric constant, and other effective transport coefficients of disperse media. This formula does not take into account the interaction of particles with each other; therefore, it is believed to be valid only for a low volume concentration of the dispersed particles. The analytical dependence for calculating the thermal conductivity of an incompressible bubble medium, with taking into account the mutual influence of the bubbles, has been obtained theoretically by the author. A comparison of the results with the calculations and experimental data of other authors has shown that Maxwell's formula, which leaves out of account the interaction of bubbles, leads to an error of less than 5% in the range of bubble concentration (by volume) from 0 to 0.55. The allowance for interaction of the bubbles almost does not improve the results of Maxwell's formula. This fact testifies that the main contribution to a change in the thermal conductivity with an increase in concentration of bubbles in the bubble medium is made by a purely geometric factor.
Keywords: bubble gas-liquid medium, thermal conductivity, electrical conductivity, permittivity and magnetic permeability.
Mots-clés : hydrodynamic interaction
@article{VTGU_2017_45_a5,
     author = {B. V. Boshenyatov},
     title = {Thermal conductivity of the bubble gas-liquid media with a high concentration},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {69--79},
     year = {2017},
     number = {45},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_45_a5/}
}
TY  - JOUR
AU  - B. V. Boshenyatov
TI  - Thermal conductivity of the bubble gas-liquid media with a high concentration
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 69
EP  - 79
IS  - 45
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_45_a5/
LA  - ru
ID  - VTGU_2017_45_a5
ER  - 
%0 Journal Article
%A B. V. Boshenyatov
%T Thermal conductivity of the bubble gas-liquid media with a high concentration
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 69-79
%N 45
%U http://geodesic.mathdoc.fr/item/VTGU_2017_45_a5/
%G ru
%F VTGU_2017_45_a5
B. V. Boshenyatov. Thermal conductivity of the bubble gas-liquid media with a high concentration. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 69-79. http://geodesic.mathdoc.fr/item/VTGU_2017_45_a5/

[1] Boshenyatov B. V., “On the prospects of applying microbubble gas-liquid media in technological processes”, Russian Physics Journal, 48:11 (2005), 49–54

[2] Boshenyatov B. V., Microbubble gas-liquid media and their prospects of applying, LAP LAMBERT Academic Publishing, 2016, 170 pp.

[3] Maxwell J. C., Electricity and magnetism, 1 st ed., Clarendon Press, 1873

[4] Einstein A., “Eine neue Bestimung der Molekuldimensionen”, Ann. Phys., 19 (1906), 289–306 | DOI | Zbl

[5] Lord Rayleigh, “On the influence of obstacles arranged in rectangular order upon the volume properties of a medium”, Phil. Mag., 34 (1892), 481–502 | DOI

[6] Jeffrey D. J., “Conduction through a random suspension of spheres”, Proc. Roy. Soc. London, A335 (1973), 355–367 | DOI

[7] Felderhof B. V., Ford G. W., Cohen E. G. D., “Two-particle cluster integral in the expansion of the dielectric constant”, J. Stat. Phys., 28 (1982), 649–672 | DOI | MR

[8] Sichoki B., Felderhof B. U., Journal of Statistical Physics, 53:1/2 (1988), 499–521 | MR

[9] Markov K. Z., “On the Heat Propagation Problem for Random Dispersions of Spheres”, Mathematica Balkanica New Series, 3:3–4 (1989), 399–417 | MR | Zbl

[10] Buryachenko V. A., Micromechanics of Heterogeneous Materials, Springer Science+Business Media. LLC, New York, 2007, 686 pp. | MR | Zbl

[11] Felderhof B. U., “Virtual mass and drag in two-phase flow”, J. Fluid Mech., 225 (1991), 177–196 | DOI | MR | Zbl

[12] Guskov O. B., Boshenyatov B. V., “Hydrodynamic interaction of spherical particles in an inviscid-fluid flow”, Doklady Physics, 56:6 (2011), 352–354 | DOI

[13] Guskov O. B., Boshenyatov B. V., “Interaction of phases and virtual mass of dispersed particles in potential flows of fluid”, Vestnik of Lobachevsky University of Nizhni Novgorod, 2011, no. 4(3), 740–741

[14] Clausius R., Die mechanische Behandlung der Elektricitat, Vieweg, Braunshweig, 1879

[15] Lorenz L., “Über die Refraktions konstante”, Ann. Phys. Chem., 11 (1880), 70ff

[16] Landau L. D., Lifshitz E. M., Pergamon Press, v. 8, Electrodynamics of continuous media, 1960 | MR

[17] Landau L. D., Lifshitz E. M., Fluid Mechanics, v. 6, Pergamon Press, 1959, 551 pp. | MR

[18] Feitosa K., Marze S., Saint-Jalmes A., Durian D. J., J. Physics: Condenced Matter, 17 (2005), 6301–6305 | DOI