Mots-clés : parabolic equation
@article{VTGU_2017_45_a3,
author = {R. K. Tagiev and R. A. Kasumov},
title = {On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {49--59},
year = {2017},
number = {45},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/}
}
TY - JOUR AU - R. K. Tagiev AU - R. A. Kasumov TI - On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 49 EP - 59 IS - 45 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/ LA - ru ID - VTGU_2017_45_a3 ER -
%0 Journal Article %A R. K. Tagiev %A R. A. Kasumov %T On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 49-59 %N 45 %U http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/ %G ru %F VTGU_2017_45_a3
R. K. Tagiev; R. A. Kasumov. On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 49-59. http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/
[1] Tikhonov A. N., “On the solution of ill-posed problems and regularization method”, Dokl. USSR Academy of Sciences, 151:3 (1963), 501–504 | Zbl
[2] Glasko V. B., Inverse problems of mathematical physics, MSU Publ., M., 1984, 112 pp.
[3] Iskenderov A. D., “On the variational formulations of multidimensional inverse problems of mathematical physics”, Dokl. USSR Academy of Sciences, 274:3 (1984), 531–533 | Zbl
[4] Alifanov O. M., Artyuhin E. A., Rumyantsev S. V., Extreme methods for solving ill-posed problems, Nauka, M., 1988, 288 pp.
[5] Karchevsky A. L., “Properties the misfit functional for a nonlinear one-dimensional coefficient hyperbolic inverse problem”, J. Inverse III-Posed. Probl., 5:2 (1997), 139–165 | DOI | MR
[6] Kabanikhin S. I., Iskakov K. T., “Justification of the Steepest Descent Method for the Integral Statement of an Inverse Problem for a Hyperbolic Equation”, Sib. Mat. Zh., 42:3 (2001), 478–494 | DOI | MR | Zbl
[7] Kabanikhin S. I., Dairbaeva G., “The inverse problem of finding a coefficient of the heat equation”, Proc. International Conference “Inverse ill-posed problems of mathematical physics” devoted to the 75th anniversary of academician M. M. Lavrentev (Novosibirsk, Russia, 2007), 1–5
[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and quasilinear equations of the parabolic type, Nauka, M., 1967, 736 pp.
[9] Lions J. L., Control of Distributed Singular Systems, Gauthier-Villars, Paris, 1985 | MR
[10] Tagiyev R. K., “Optimal control of coefficients in parabolic systems”, Diff. equation, 45:10 (2009), 1492–1501 | Zbl
[11] Tagiyev R. K., “Optimal control of coefficients of a quasilinear parabolic equation”, Automation and Remote Control, 70:11 (2009) | DOI | MR | Zbl
[12] Tagiyev R. K., “An optimal control problem for a quasilinear parabolic equation with controls in the coefficients and phase constraints”, Diff. equation, 49:3 (2013), 369–381 | DOI | MR | Zbl
[13] Vasilyev F. P., Methods for solving extreme problems, Nauka, M., 1981, 400 pp.
[14] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasilinear equations of the elliptic type, Nauka, M., 1973, 576 pp.