On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 49-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let a controlled process be described in $\mathcal{Q}_T = \{(x,t) \in R^2 : 0 < x <\ell, 0 < t < T\}$ by the following initial-boundary value problem for a linear parabolic equation: \begin{gather*} u_t-(k(x,t)u_x)_x+q(x,t)u=f(x,t), \quad (x,t)\in\mathcal{Q}_T,\\ u\mid_{t=0}=\varphi(x), \quad 0\leqslant x\leqslant\ell,\\ u_x\mid_{x=0}=u_x\mid_{x=\ell}=0, \quad 0<t\leqslant T. \end{gather*} Here $\ell, T>0$ are given numbers $f (x,t)\in L_2 (\mathcal{Q}_T)$, $\varphi(x)\in W_2^1(0,\ell)$ are given functions, $k(x,t)$, $q(x,t)$ are unknown coefficients, $\upsilon(x,t) = (k(x,t),q(x,t))$ is a control, $u = u(x,t)= u(x,t;\upsilon)$ is the solution to the boundary value problem corresponding to the control $\upsilon = \upsilon(x,t)$. Let us introduce a set of admissible controls \begin{gather*} V = \{\upsilon(x,t) = (k(x,t),q(x,t)) \in H = W_2^1(\mathcal{Q}_T)\times L_2 (\mathcal{Q}_T): 0 < v \leqslant k(x,t)\leqslant \mu,\\ |k_x (x,t)|\leqslant\mu_1,\ |k_t (x,t)| \leqslant\mu_2,\ 0 \leqslant q_0 \leqslant q(x,t) \leqslant q_1 \text{ п.в.на } \mathcal{Q}_T\}, \end{gather*} where $\mu\geqslant v> 0$, $\mu_1, \mu_2 > 0$, $q_1 \geqslant q_0 \geqslant 0$ are given numbers. Let us state the following coefficient inverse problem of optimal control type: among all the admissible controls $\upsilon(x,t)=(k(x,t),q(x,t))\in V$, find the controls $\upsilon_*(x,t)=(k_*(x,t),q_*(x,t))\in V$ minimizing the functional $$ J(\upsilon)=\int_0^T\left|\int_0^{\ell}K(x, t)u(x,t;\upsilon)dx-E(t) \right|^2dt $$ where $K(x,t)$, $E(t)$ are known functions, $\upsilon= \upsilon(x,t)$ is a control $u = u(x,t) = u(x,t;\upsilon)$ is a generalized solution to the boundary value problem from $V_2^{1,0} (\mathcal{Q}_T)$ corresponding to the control $\upsilon = \upsilon(x, t)$ is a given set. In the present work, the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition is considered. The questions of correctness of the optimization formulation of the inverse problem are investigated. The differentiability of the objective functional is proved and the formula for its gradient is found. A necessary condition of optimality is found in the form of a variational inequality.
Keywords: optimal control, integral boundary condition, optimality condition.
Mots-clés : parabolic equation
@article{VTGU_2017_45_a3,
     author = {R. K. Tagiev and R. A. Kasumov},
     title = {On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {49--59},
     year = {2017},
     number = {45},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/}
}
TY  - JOUR
AU  - R. K. Tagiev
AU  - R. A. Kasumov
TI  - On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 49
EP  - 59
IS  - 45
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/
LA  - ru
ID  - VTGU_2017_45_a3
ER  - 
%0 Journal Article
%A R. K. Tagiev
%A R. A. Kasumov
%T On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 49-59
%N 45
%U http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/
%G ru
%F VTGU_2017_45_a3
R. K. Tagiev; R. A. Kasumov. On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 49-59. http://geodesic.mathdoc.fr/item/VTGU_2017_45_a3/

[1] Tikhonov A. N., “On the solution of ill-posed problems and regularization method”, Dokl. USSR Academy of Sciences, 151:3 (1963), 501–504 | Zbl

[2] Glasko V. B., Inverse problems of mathematical physics, MSU Publ., M., 1984, 112 pp.

[3] Iskenderov A. D., “On the variational formulations of multidimensional inverse problems of mathematical physics”, Dokl. USSR Academy of Sciences, 274:3 (1984), 531–533 | Zbl

[4] Alifanov O. M., Artyuhin E. A., Rumyantsev S. V., Extreme methods for solving ill-posed problems, Nauka, M., 1988, 288 pp.

[5] Karchevsky A. L., “Properties the misfit functional for a nonlinear one-dimensional coefficient hyperbolic inverse problem”, J. Inverse III-Posed. Probl., 5:2 (1997), 139–165 | DOI | MR

[6] Kabanikhin S. I., Iskakov K. T., “Justification of the Steepest Descent Method for the Integral Statement of an Inverse Problem for a Hyperbolic Equation”, Sib. Mat. Zh., 42:3 (2001), 478–494 | DOI | MR | Zbl

[7] Kabanikhin S. I., Dairbaeva G., “The inverse problem of finding a coefficient of the heat equation”, Proc. International Conference “Inverse ill-posed problems of mathematical physics” devoted to the 75th anniversary of academician M. M. Lavrentev (Novosibirsk, Russia, 2007), 1–5

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and quasilinear equations of the parabolic type, Nauka, M., 1967, 736 pp.

[9] Lions J. L., Control of Distributed Singular Systems, Gauthier-Villars, Paris, 1985 | MR

[10] Tagiyev R. K., “Optimal control of coefficients in parabolic systems”, Diff. equation, 45:10 (2009), 1492–1501 | Zbl

[11] Tagiyev R. K., “Optimal control of coefficients of a quasilinear parabolic equation”, Automation and Remote Control, 70:11 (2009) | DOI | MR | Zbl

[12] Tagiyev R. K., “An optimal control problem for a quasilinear parabolic equation with controls in the coefficients and phase constraints”, Diff. equation, 49:3 (2013), 369–381 | DOI | MR | Zbl

[13] Vasilyev F. P., Methods for solving extreme problems, Nauka, M., 1981, 400 pp.

[14] Ladyzhenskaya O. A., Uraltseva N. N., Linear and quasilinear equations of the elliptic type, Nauka, M., 1973, 576 pp.