@article{VTGU_2017_45_a2,
author = {D. Yu. Ivanov},
title = {Closedness of sums of unbounded operators acting on different variables in the spaces of square-integrable functions of several variables},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {35--48},
year = {2017},
number = {45},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_45_a2/}
}
TY - JOUR AU - D. Yu. Ivanov TI - Closedness of sums of unbounded operators acting on different variables in the spaces of square-integrable functions of several variables JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 35 EP - 48 IS - 45 UR - http://geodesic.mathdoc.fr/item/VTGU_2017_45_a2/ LA - ru ID - VTGU_2017_45_a2 ER -
%0 Journal Article %A D. Yu. Ivanov %T Closedness of sums of unbounded operators acting on different variables in the spaces of square-integrable functions of several variables %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2017 %P 35-48 %N 45 %U http://geodesic.mathdoc.fr/item/VTGU_2017_45_a2/ %G ru %F VTGU_2017_45_a2
D. Yu. Ivanov. Closedness of sums of unbounded operators acting on different variables in the spaces of square-integrable functions of several variables. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 35-48. http://geodesic.mathdoc.fr/item/VTGU_2017_45_a2/
[1] Reed M., Simon B., Methods of Modern Mathematical Physics, v. 2, Fourier Analysis, Self-adjointness, Academic Press, New York–London, 1975 | MR | MR | Zbl
[2] Clement Ph., Heijmans H. J. A. M., Angenent S., Duijn C. J., van and Pagter B. de, One-parameter Semigroups, CWI Monographs, 5, North Holland, Amsterdam–New York, 1987 | MR | MR | Zbl
[3] Ivanov D. Yu., “Solution of two-dimensional boundary-value problems corresponding to initial-boundary value problems of diffusion on a right cylinder”, Differential Equations, 46:8 (2010), 1104–1113 | DOI | MR | Zbl
[4] Ivanov D. Yu., “Using of vector potentials for solving of the two-dimensional Robin problem describing the heat conductivity in a right cylinder”, Actual Problems of Humanitarian and Natural Sciences, 2016, no. 3, 8–14
[5] Ivanov D. Yu., “An economical method of the calculation of operators resolving some heat conduction problems in straight cylinders”, Actual Problems of Humanitarian and Natural Sciences, 2014, no. 9, 16–32
[6] Ivanov D. Yu., “Calculation of operators resolving problems of heat conduction in straight cylinders using the semigroup symmetry”, Proceedings of Moscow State Technical University MAMI, 4:4(22) (2014), 26–38
[7] Ivanov D. Yu., “Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel”, Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 6(38), 33–45 | DOI
[8] Reed M., Simon B., Methods of Modern Mathematical Physics, v. 1, Functional Analysis, Academic Press, New York–London, 1972 | MR | MR | Zbl
[9] Lyantse V. E., Storozh O. G., Methods of the Theory of Unbounded Operators, Naukova Dumka, Kiev, 1983
[10] Reed M., Simon B., Methods of Modern Mathematical Physics, v. 4, Analysis of Operators, Academic Press, New York–London, 1978 | MR | MR | Zbl
[11] Kreyn S. G., Linear Differential Equations in the Banach Space, Nauka, M., 1967, 464 pp.
[12] Kato T., Perturbation theory for linear operators, Springer Verlag, Berlin–New York, 1966 | MR | MR | Zbl
[13] Budak B. M., Samarskiy A. A., Tikhonov A. N., Collection of Problems in Mathematical Physics, Nauka, M., 1980, 685 pp. | MR
[14] Vilenkin N. Ya., Gorin E. A., Kostyuchenko A. G., Krasnosel'skiy M. A., Kreyn S. G. et al., Functional Analysis, Reference mathematical library, ed. Kreyn S. G., Nauka, M., 1964, 425 pp.
[15] Smirnov V. I., A Course of Higher Mathematics, v. 5, St. Publ. Phis. Math. Lit., M., 1959, 655 pp.
[16] Kolmogorov A. N., Fomin S. V., Elements of the Theory of Functions and Functional Analysis, Nauka, M., 1976, 543 pp. | MR