On the theory of $2$-ordered groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 25-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

1. On the order on a straight line $l_{e, \alpha}$. Let $\langle G, \cdot, \zeta\rangle$ is a non-degenerate $2$-ordered group, $\alpha\in G$, $o(\alpha)=2$, $l_{e, \alpha}=\{x\in G\mid \zeta(\alpha, e, x)=0\}$. It is known that $l_{e,\alpha} \triangleleft G$. As $l_{e,\alpha}\ne G$, then $\exists c\in G(\zeta(c,\alpha,e)\ne0)$. Let $\zeta(c, \alpha, e)=1$. Let: $x. It is known that the function $\zeta_c$ sets linear order on the line $l_{e,\alpha}$. Let us note that $\alpha regarding this order. As $\alpha\in l_{e,\alpha}$ then the group $\langle l_{e,\alpha},\cdot\rangle$ cannot be linearly ordered. Let us find a subgroup which is linearly ordered regarding to the specified order $\zeta_c$. Theorem 1.1. Let $P=\{x\in l_{e,\alpha}\mid x\geqslant e\}$, $H=P\cup P^{-1}$. If $|P|\ne1$, then $\langle H, \cdot, \zeta_c\rangle$ is a linearly ordered group. 2. On the cardinality of the set of elements of order $n$ in $2$-ordered group Let $n\in\mathbf{N}$ and $H=\{x\in G \mid x^n=e\}$. As $T(G) \subset Z(G)$, then $H < G$ and $H$ is an Abelian group. Consequently, $\langle H, \cdot, \zeta\rangle$ is a locally finite $2$-ordered group. Let $\zeta\not\equiv0$ on the set $H$. Theorem 2.1. Let $\langle G, \cdot, \zeta\rangle$ be a non-degenerate $2$-ordered group, $n\in\mathbf{N}$ and $H=\{x\in G\mid x^n=e\}$. If $\zeta\not\equiv0$ on the set $H$, then $|H| \leqslant n$.
Keywords: linearly ordered group, two-dimensional order, $2$-ordered group, involution, straight line.
@article{VTGU_2017_45_a1,
     author = {A. I. Zabarina and G. G. Pestov and E. A. Fomina},
     title = {On the theory of $2$-ordered groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {25--34},
     year = {2017},
     number = {45},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2017_45_a1/}
}
TY  - JOUR
AU  - A. I. Zabarina
AU  - G. G. Pestov
AU  - E. A. Fomina
TI  - On the theory of $2$-ordered groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2017
SP  - 25
EP  - 34
IS  - 45
UR  - http://geodesic.mathdoc.fr/item/VTGU_2017_45_a1/
LA  - ru
ID  - VTGU_2017_45_a1
ER  - 
%0 Journal Article
%A A. I. Zabarina
%A G. G. Pestov
%A E. A. Fomina
%T On the theory of $2$-ordered groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2017
%P 25-34
%N 45
%U http://geodesic.mathdoc.fr/item/VTGU_2017_45_a1/
%G ru
%F VTGU_2017_45_a1
A. I. Zabarina; G. G. Pestov; E. A. Fomina. On the theory of $2$-ordered groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 25-34. http://geodesic.mathdoc.fr/item/VTGU_2017_45_a1/

[1] Zabarina A. I., Pestov G. G., “Two-dimensionally ordered groups”, Tomsk State University Journal of Mathematics and Mechanics, 2011, no. 1(13), 5–8

[2] Pestov G. G., Zabarina A. I., Tobolkin A. A., Fomina E. A., “On 2-ordered groups”, Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 2(34), 30–40 | DOI

[3] Pestov G. G., Two-dimensionally ordered fields, Tomsk St. Univ. Publ., Tomsk, 2003, 128 pp.

[4] Fuchs L., Partially ordered algebraic systems, Pergamon Press, Oxford, 1963 | MR | Zbl

[5] Tobolkin A. A., On the theory of n-ordered groups, Dis. kand. fiz.-mat. nauk: 01.01.06, Tomsk, 2009, 71 pp. (in Russian)

[6] Pestov G. G., Fomina E. A., “A subfield $B$ of elements which are infinitely close to the base of elements”, Tomsk State University Journal of Mathematics and Mechanics, 2009, no. 2(6), 41–47

[7] Pestov G. G., Fomina E. A., “Construction of an infinitely narrow 2-dimensionally ordered field”, Tomsk State University Journal of Mathematics and Mechanics, 2007, no. 1(1), 50–53

[8] Fomina E. A., “A criterion of an infinitely narrow field”, Tomsk State University Journal of Mathematics and Mechanics, 2009, no. 1(5), 27–30

[9] Zabarina A. I., On cyclically ordered groups, Dis. kand. fiz.-mat. nauk: 01.01.06, Tomsk, 1984, 84 pp.

[10] Terre A. I., Elements of geometry of the $n$-dimensional order, Dep. VINITI 27-10-82, No 5941 82, Tomsk, 1982, 36 pp.

[11] Pestov G. G., On the theory of ordered algebraic systems, Dis. doct. fiz.-mat. nauk: 01.01.06, Tomsk, 2003, 273 pp.

[12] Pestov G. G., Research on the theory of the $n$-dimensional order function, Dis. kand. fiz.-mat. nauk: 01.01.06, Tomsk, 1966, 131 pp.