On the theory of $2$-ordered groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 25-34
Voir la notice de l'article provenant de la source Math-Net.Ru
1. On the order on a straight line $l_{e, \alpha}$.
Let $\langle G, \cdot, \zeta\rangle$ is a non-degenerate $2$-ordered group, $\alpha\in G$, $o(\alpha)=2$, $l_{e, \alpha}=\{x\in G\mid \zeta(\alpha, e, x)=0\}$.
It is known that $l_{e,\alpha} \triangleleft G$. As $l_{e,\alpha}\ne G$, then $\exists c\in G(\zeta(c,\alpha,e)\ne0)$. Let $\zeta(c,
\alpha, e)=1$.
Let: $x$.
It is known that the function $\zeta_c$ sets linear order on the line $l_{e,\alpha}$. Let us note that $\alpha$
regarding this order. As $\alpha\in l_{e,\alpha}$ then the group $\langle l_{e,\alpha},\cdot\rangle$ cannot be linearly ordered. Let us find a subgroup which is linearly ordered regarding to the specified order $\zeta_c$.
Theorem 1.1. Let $P=\{x\in l_{e,\alpha}\mid x\geqslant e\}$, $H=P\cup P^{-1}$. If $|P|\ne1$, then $\langle H, \cdot, \zeta_c\rangle$ is a linearly ordered group.
2. On the cardinality of the set of elements of order $n$ in $2$-ordered group Let $n\in\mathbf{N}$ and $H=\{x\in G \mid x^n=e\}$. As $T(G) \subset Z(G)$, then $H G$ and $H$ is an Abelian group.
Consequently, $\langle H, \cdot, \zeta\rangle$ is a locally finite $2$-ordered group. Let $\zeta\not\equiv0$ on the set $H$.
Theorem 2.1. Let $\langle G, \cdot, \zeta\rangle$ be a non-degenerate $2$-ordered group, $n\in\mathbf{N}$ and
$H=\{x\in G\mid x^n=e\}$. If $\zeta\not\equiv0$ on the set $H$, then $|H| \leqslant n$.
Keywords:
linearly ordered group, two-dimensional order, $2$-ordered group, involution, straight line.
@article{VTGU_2017_45_a1,
author = {A. I. Zabarina and G. G. Pestov and E. A. Fomina},
title = {On the theory of $2$-ordered groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {25--34},
publisher = {mathdoc},
number = {45},
year = {2017},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2017_45_a1/}
}
TY - JOUR AU - A. I. Zabarina AU - G. G. Pestov AU - E. A. Fomina TI - On the theory of $2$-ordered groups JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2017 SP - 25 EP - 34 IS - 45 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2017_45_a1/ LA - ru ID - VTGU_2017_45_a1 ER -
A. I. Zabarina; G. G. Pestov; E. A. Fomina. On the theory of $2$-ordered groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 45 (2017), pp. 25-34. http://geodesic.mathdoc.fr/item/VTGU_2017_45_a1/