Numerical investigation of a viscous fluid flow through the gap between two parallel plates
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 64-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The process of unsteady flow of a viscous incompressible fluid through the gap between two parallel plates is considered. To describe the process, a one-dimensional model of the plane-parallel flow of a viscous fluid is proposed. Within the framework of this model, the problem with nonlocal additional condition for obtaining the pressure drop versus the time for a given volumetric flow rate of the fluid through the gap is posed. This problem belongs to the class of inverse problems associated with the reconstruction of right-hand sides of parabolic equations as functions of time. Using the time sampling, the posed problem is converted to a semidiscrete problem. In order to solve this problem, a special formulation is suggested. As a result, the solution of the original problem at each time step is reduced to solving two boundary value problems with local boundary conditions and the linear equation with respect to the approximate value of the pressure drop.
Keywords: fluid flow through the gap, fluid flow rate through the gap, pressure drop along the gap length, inverse problem.
Mots-clés : nonlocal condition
@article{VTGU_2016_5_a6,
     author = {Kh. M. Gamzayev and I. K. Gadimov},
     title = {Numerical investigation of a viscous fluid flow through the gap between two parallel plates},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {64--72},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_5_a6/}
}
TY  - JOUR
AU  - Kh. M. Gamzayev
AU  - I. K. Gadimov
TI  - Numerical investigation of a viscous fluid flow through the gap between two parallel plates
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 64
EP  - 72
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_5_a6/
LA  - ru
ID  - VTGU_2016_5_a6
ER  - 
%0 Journal Article
%A Kh. M. Gamzayev
%A I. K. Gadimov
%T Numerical investigation of a viscous fluid flow through the gap between two parallel plates
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 64-72
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2016_5_a6/
%G ru
%F VTGU_2016_5_a6
Kh. M. Gamzayev; I. K. Gadimov. Numerical investigation of a viscous fluid flow through the gap between two parallel plates. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 64-72. http://geodesic.mathdoc.fr/item/VTGU_2016_5_a6/

[1] Bashta T. M., Hydraulics, hydraulic machines, and hydraulic drives, Mashinostroenie, M., 1970

[2] Sheypak A. A., Hydraulics and hydropneumatic: a textbook, v. 1, Fundamentals of fluid and gas mechanics, 2nd ed., MGIU, M., 2003

[3] Lepeshkin A. V., Mikhaylin A. A., Sheypak A. A., Hydraulics and hydropneumatic, A textbook for high schools, v. 2, Hydraulic machines and hydropneumatic, 4th ed., ed. A. A. Sheypak, MGIU, M., 2009

[4] Mott R. L., Applied Fluid Mechanics, 6th ed., Prentice Hall, 2005, 640 pp.

[5] Esposito A., Fluid Power with Applications, 7th ed., Prentice Hall, 2008, 672 pp.

[6] Loytsyanskiy L. G., Fluid mechanics, A textbook for high schools, Drofa, M., 2003

[7] Alifanov O. M., Artyukhin E. A., Rumyantsev S. V., Extreme methods for solving ill-posed problems, Nauka, M., 1988

[8] Samarskiy A. A., Vabishchevich P. N., Numerical methods for solving inverse problems of mathematical physics, LKI publ., M., 2009

[9] Gamzaev Kh. M., “On numerical simulation of the fluid flow in a dualcompletion water-bearing system”, Tomsk State University Journal of Mathematics and Mechanics, 2015, no. 3(35), 52–59 | DOI