Theory of the inertial density-measuring sensor for the oil–liquid–gas mixture
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 53-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Emerson transport company (USA), which is engaged in delivery of oil to consumers, has developed an inertial sensor for medium density measurements. The sensor operating principle is based on Coriolis forces the action of which causes the deflection of a vibrating tube with a moving liquid-gas mixture in it. The real sensor (Emerson) consists of two metal tubes with a gas–liquid mixture flow. In the central part of the system, there are two electromagnets which create axial vibrations of the frames. In this paper, a single pipe and a rigid stand with electromagnets between them are used. The rounded frame is replaced by piecewise linear sections and fixed onto the main channel by rubber elements. On the basis of the angular momentum theory for relative motion around a mobile axis passing through the mass center of the system, the governing equation for torsional vibrations of the meter frame has been obtained. The analytical and numerical solutions of this equation are obtained and used as a basis for estimating the effect of the mixture density on the amplitude of frame torsional vibrations.
Keywords: oil and gas–liquid mixture, inertial density sensor, meter frame
Mots-clés : electromagnets, torsional vibrations.
@article{VTGU_2016_5_a5,
     author = {A. M. Bubenchikov and M. A. Bubenchikov and G. E. Dunaevskiy and I. A. Evseev and O. S. Kiseleva and V. O. Kutenkov and F. Zh. Naymanbaev},
     title = {Theory of the inertial density-measuring sensor for the oil{\textendash}liquid{\textendash}gas mixture},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {53--63},
     year = {2016},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_5_a5/}
}
TY  - JOUR
AU  - A. M. Bubenchikov
AU  - M. A. Bubenchikov
AU  - G. E. Dunaevskiy
AU  - I. A. Evseev
AU  - O. S. Kiseleva
AU  - V. O. Kutenkov
AU  - F. Zh. Naymanbaev
TI  - Theory of the inertial density-measuring sensor for the oil–liquid–gas mixture
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 53
EP  - 63
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_5_a5/
LA  - ru
ID  - VTGU_2016_5_a5
ER  - 
%0 Journal Article
%A A. M. Bubenchikov
%A M. A. Bubenchikov
%A G. E. Dunaevskiy
%A I. A. Evseev
%A O. S. Kiseleva
%A V. O. Kutenkov
%A F. Zh. Naymanbaev
%T Theory of the inertial density-measuring sensor for the oil–liquid–gas mixture
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 53-63
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2016_5_a5/
%G ru
%F VTGU_2016_5_a5
A. M. Bubenchikov; M. A. Bubenchikov; G. E. Dunaevskiy; I. A. Evseev; O. S. Kiseleva; V. O. Kutenkov; F. Zh. Naymanbaev. Theory of the inertial density-measuring sensor for the oil–liquid–gas mixture. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 53-63. http://geodesic.mathdoc.fr/item/VTGU_2016_5_a5/

[1] Khudobina J., Bubenchikov A., Bubenchikov M., et al., “Numerical Simulation of Oil Pool Boundary Evolution”, Advanced Materials in Technology and Construction (AMTC-2015), AIP Conf. Proc., 1698, 2016, 060006 | DOI

[2] Bubenchikov A. M., Bubenchikov M. A., Potekaev A. I., et al., “Condensed-state physicsthe potential field of carbon bodies as a basis forsorption properties of barrier gas systems”, Russ. Phys. J., 58:7 (2015), 882–888 | DOI

[3] Bubenchikov A., Bubenchikov M., Matvienko O., Shcherbakov N., “The mathematical model of the chevron-arch gearing transmitter”, Advanced Materials in Technology and Construction (AMTC-2015), AIP Conf. Proc., 1698, 2016, 060005 | DOI

[4] Bubenchikov A., Bubenchikov M., Matvienko O., et al., “Simple energy barrier for component mixture of natural gases”, Advanced Materials in Technology and Construction (AMTC-2015), AIP Conf. Proc., 1698, 2016, 060007 | DOI

[5] Bubenchikov M. A., Bubenchikov A. M., Usenko O. V., Ukolov A. V., “Permeability of ultra-thin amorphous carbonfilms”, EPJ Web of Conferences, 110 (2016), 01078 | DOI

[6] Bubenchikov M. A., Bubenchikov A. M., Usenko O. V., Tsyrenova V. B., “Ability of fullerene to accumulate hydrogen”, EPJ Web of Conferences, 110 (2016), 01077 | DOI

[7] Bubenchikov M. A., Potekaev A. I., Bubenchikov A. M., et al., “The interaction potential of an open nanotubeand its permeability: molecular dynamicssimulation”, EPJ Web of Conferences, 110 (2016), 01061 | DOI

[8] Bubenchikov M. A., Bubenchikov A. M., Usenko O. V., et al., “Separation of gases using ultra-thin porouslayers of monodisperse nanoparticles”, EPJ Web of Conferences, 110 (2016), 01014 | DOI

[9] Tomilov E. D., Theoretical mechanics, Tomsk St. Univ. Publ., Tomsk, 1970