On the solution of the nonstationary Schr\"odinger equation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 28-34
Voir la notice de l'article provenant de la source Math-Net.Ru
The Schrödinger equation describes quantum mechanics processes occurring when particles pass through a potential barrier. In this problem, it is necessary to find the probability density of particles and to track its evolution in time. In this paper, it is shown that time-dependent Schrödinger's equation has a direct analogy to the heat conductivity equation, differing from it in the imaginary time. As a numerical method of the decision, it is offered to apply the method of matrix exponential function in which a finite difference analogue of the one-dimensional Laplacian is considered as a matrix operating on a vector. This way of the solution allows one to consider potential barriers of any form in the Schrödinger equation. Time is included now into the decision as a parameter, and it allows one to get rid of the necessity of time quantization and to do it only on a spatial variable. In this aspect, this way favorably differs from traditional ways of solving evolutionary equations which use quantization both on time and on a spatial variable. Results of numerical experiments show that the greatest amplitudes of probability are localized in the field of minima of potential barriers.
Keywords:
probability amplitude, Schrödinger equation, matrix exhibitor, heat conductivity equation, potential barriers.
@article{VTGU_2016_5_a2,
author = {E. Yu. Mishcharina and E. E. Libin and M. A. Bubenchikov},
title = {On the solution of the nonstationary {Schr\"odinger} equation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {28--34},
publisher = {mathdoc},
number = {5},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/}
}
TY - JOUR AU - E. Yu. Mishcharina AU - E. E. Libin AU - M. A. Bubenchikov TI - On the solution of the nonstationary Schr\"odinger equation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 28 EP - 34 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/ LA - ru ID - VTGU_2016_5_a2 ER -
%0 Journal Article %A E. Yu. Mishcharina %A E. E. Libin %A M. A. Bubenchikov %T On the solution of the nonstationary Schr\"odinger equation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2016 %P 28-34 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/ %G ru %F VTGU_2016_5_a2
E. Yu. Mishcharina; E. E. Libin; M. A. Bubenchikov. On the solution of the nonstationary Schr\"odinger equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 28-34. http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/