On the solution of the nonstationary Schr\"odinger equation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 28-34

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schrödinger equation describes quantum mechanics processes occurring when particles pass through a potential barrier. In this problem, it is necessary to find the probability density of particles and to track its evolution in time. In this paper, it is shown that time-dependent Schrödinger's equation has a direct analogy to the heat conductivity equation, differing from it in the imaginary time. As a numerical method of the decision, it is offered to apply the method of matrix exponential function in which a finite difference analogue of the one-dimensional Laplacian is considered as a matrix operating on a vector. This way of the solution allows one to consider potential barriers of any form in the Schrödinger equation. Time is included now into the decision as a parameter, and it allows one to get rid of the necessity of time quantization and to do it only on a spatial variable. In this aspect, this way favorably differs from traditional ways of solving evolutionary equations which use quantization both on time and on a spatial variable. Results of numerical experiments show that the greatest amplitudes of probability are localized in the field of minima of potential barriers.
Keywords: probability amplitude, Schrödinger equation, matrix exhibitor, heat conductivity equation, potential barriers.
@article{VTGU_2016_5_a2,
     author = {E. Yu. Mishcharina and E. E. Libin and M. A. Bubenchikov},
     title = {On the solution of the nonstationary {Schr\"odinger} equation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {28--34},
     publisher = {mathdoc},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/}
}
TY  - JOUR
AU  - E. Yu. Mishcharina
AU  - E. E. Libin
AU  - M. A. Bubenchikov
TI  - On the solution of the nonstationary Schr\"odinger equation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 28
EP  - 34
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/
LA  - ru
ID  - VTGU_2016_5_a2
ER  - 
%0 Journal Article
%A E. Yu. Mishcharina
%A E. E. Libin
%A M. A. Bubenchikov
%T On the solution of the nonstationary Schr\"odinger equation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 28-34
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/
%G ru
%F VTGU_2016_5_a2
E. Yu. Mishcharina; E. E. Libin; M. A. Bubenchikov. On the solution of the nonstationary Schr\"odinger equation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2016), pp. 28-34. http://geodesic.mathdoc.fr/item/VTGU_2016_5_a2/