Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 84-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Stability of the viscous two-dimensional perturbations in a supersonic plane Couette flow of perfect and vibrationally excited gases is investigated within the framework of the linear theory. In both cases, the transport coefficients were taken to be both constant and dependent on the static temperature of the flow. The Sutherland viscosity law was used in order to take into account the temperature dependence of shear viscosity. The thermal conductivity coefficients caused by the translational, rotational, and vibrational motions of gas molecules are determined by Eucken's relations. A detailed comparison of the stability characteristics of the acoustic modes I and II for both viscosity models is carried out for a perfect gas. It is shown that the «viscous» stratification significantly increases the flow stability as compared to the case of the constant viscosity model. At the same time, the characteristic features in the development of viscous disturbances, typical for the Sutherland model, remain valid in the case of a simpler constant viscosity model. The dissipative effect of the vibrational mode excitation is preserved in the case when the temperature dependence of the transport coefficients is taken into account. The relative reduction caused in the growth rates of viscous disturbances for modes I and II by the vibrational excitation is practically the same for both viscosity models. The increase in the critical Reynolds number is approximately 12% in both cases.
Keywords: linear stability, Sutherland formula, vibrational relaxation
Mots-clés : acoustic modes.
@article{VTGU_2016_4_a7,
     author = {I. V. Ershov},
     title = {Stability of the {Couette} flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {84--99},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/}
}
TY  - JOUR
AU  - I. V. Ershov
TI  - Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 84
EP  - 99
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/
LA  - ru
ID  - VTGU_2016_4_a7
ER  - 
%0 Journal Article
%A I. V. Ershov
%T Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 84-99
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/
%G ru
%F VTGU_2016_4_a7
I. V. Ershov. Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 84-99. http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/

[1] Duck P. W., Erlebacher G., Hussaini M. Y., “On the linear stability of compressible plane Couette flow”, J. Fluid Mech., 258 (1994), 131–165 | DOI | MR | Zbl

[2] Hu S., Zhong X., “Linear stability of viscous supersonic plane Couette flow”, Phys. Fluids, 10:3 (1998), 709–729 | DOI | MR | Zbl

[3] Malik M., Dey J., Alam M., “Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow”, Phys. Rev. E, 77:3 (2008), 036322, 15 pp. | DOI

[4] Grigor'ev Yu. N., Ershov I. V., “Linear stability of the Couette flow of a vibrationally excited gas. 1. Inviscid problem”, J. Appl. Mech. Tech. Phys., 55:2 (2014), 258–269 | DOI | MR | Zbl

[5] Grigor'ev Yu. N., Ershov I. V., “Linear stability of the Couette flow of a vibrationally excited gas. 2. Viscous problem”, J. Appl. Mech. Tech. Phys., 57:2 (2016), 247–257 | DOI | MR | Zbl

[6] Nagnibeda E. A., Kustova E. V., Non-equilibrium reacting gas flows. Kinetic theory of transport and relaxation processes, Springer, Berlin, 2009 | MR | Zbl

[7] Grigor'ev Yu. N., Ershov I. V., Stability of the flows of the relaxing molecular gases, Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2012

[8] Ferziger J. H., Kaper H. G., Mathematical theory of transport processes in gases, North Holland Publ. Comp., Amsterdam–London, 1972

[9] Kaye G. W., Laby T. H., Tables of physical and chemical constants, Longmans, Green Co., London–New York–Toronto, 1958

[10] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988 | MR | Zbl

[11] Trefethen L. N., Spectral Methods in Matlab, Soc. for Indus. and Appl. Math., Philadelphia, 2000 | DOI | MR | Zbl

[12] Grigor'ev Yu. N., Yershov I. V., “The linear stability of inviscid shear flow of a vibrationally excited diatomic gas”, J. Appl. Math. Mech., 75:4 (2011), 410–418 | DOI | MR | Zbl

[13] Grigor'ev Yu. N., Ershov I. V., “Critical Reynolds number of the Couette flow in a vibrationally excited diatomic gas. Energy approach”, J. Appl. Mech. Tech. Phys., 53:4 (2012), 517–531 | DOI | MR | Zbl

[14] Korn G. A., Korn T. M., Mathematical handbook for scientists and engineers, McGraw-Hill, New York, 1961 | MR | MR | Zbl

[15] Moler C. B., Stewart G. W., “An algorithm for generalized matrix eigenvalue problems”, SIAM J. Numer. Anal., 10:2 (1973), 241–256 | DOI | MR | Zbl

[16] Morawetz C. S., “The eigenvalues of some stability problems involving viscosity”, J. Rat. Mech. Anal., 1 (1952), 579–603 | MR | Zbl