Mots-clés : acoustic modes.
@article{VTGU_2016_4_a7,
author = {I. V. Ershov},
title = {Stability of the {Couette} flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {84--99},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/}
}
TY - JOUR AU - I. V. Ershov TI - Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 84 EP - 99 IS - 4 UR - http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/ LA - ru ID - VTGU_2016_4_a7 ER -
%0 Journal Article %A I. V. Ershov %T Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2016 %P 84-99 %N 4 %U http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/ %G ru %F VTGU_2016_4_a7
I. V. Ershov. Stability of the Couette flow of a diatomic gas in conditions of viscous stratification and vibrational mode excitation. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 84-99. http://geodesic.mathdoc.fr/item/VTGU_2016_4_a7/
[1] Duck P. W., Erlebacher G., Hussaini M. Y., “On the linear stability of compressible plane Couette flow”, J. Fluid Mech., 258 (1994), 131–165 | DOI | MR | Zbl
[2] Hu S., Zhong X., “Linear stability of viscous supersonic plane Couette flow”, Phys. Fluids, 10:3 (1998), 709–729 | DOI | MR | Zbl
[3] Malik M., Dey J., Alam M., “Linear stability, transient energy growth, and the role of viscosity stratification in compressible plane Couette flow”, Phys. Rev. E, 77:3 (2008), 036322, 15 pp. | DOI
[4] Grigor'ev Yu. N., Ershov I. V., “Linear stability of the Couette flow of a vibrationally excited gas. 1. Inviscid problem”, J. Appl. Mech. Tech. Phys., 55:2 (2014), 258–269 | DOI | MR | Zbl
[5] Grigor'ev Yu. N., Ershov I. V., “Linear stability of the Couette flow of a vibrationally excited gas. 2. Viscous problem”, J. Appl. Mech. Tech. Phys., 57:2 (2016), 247–257 | DOI | MR | Zbl
[6] Nagnibeda E. A., Kustova E. V., Non-equilibrium reacting gas flows. Kinetic theory of transport and relaxation processes, Springer, Berlin, 2009 | MR | Zbl
[7] Grigor'ev Yu. N., Ershov I. V., Stability of the flows of the relaxing molecular gases, Izd. Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2012
[8] Ferziger J. H., Kaper H. G., Mathematical theory of transport processes in gases, North Holland Publ. Comp., Amsterdam–London, 1972
[9] Kaye G. W., Laby T. H., Tables of physical and chemical constants, Longmans, Green Co., London–New York–Toronto, 1958
[10] Canuto C., Hussaini M. Y., Quarteroni A., Zang T. A., Spectral Methods in Fluid Dynamics, Springer, Berlin, 1988 | MR | Zbl
[11] Trefethen L. N., Spectral Methods in Matlab, Soc. for Indus. and Appl. Math., Philadelphia, 2000 | DOI | MR | Zbl
[12] Grigor'ev Yu. N., Yershov I. V., “The linear stability of inviscid shear flow of a vibrationally excited diatomic gas”, J. Appl. Math. Mech., 75:4 (2011), 410–418 | DOI | MR | Zbl
[13] Grigor'ev Yu. N., Ershov I. V., “Critical Reynolds number of the Couette flow in a vibrationally excited diatomic gas. Energy approach”, J. Appl. Mech. Tech. Phys., 53:4 (2012), 517–531 | DOI | MR | Zbl
[14] Korn G. A., Korn T. M., Mathematical handbook for scientists and engineers, McGraw-Hill, New York, 1961 | MR | MR | Zbl
[15] Moler C. B., Stewart G. W., “An algorithm for generalized matrix eigenvalue problems”, SIAM J. Numer. Anal., 10:2 (1973), 241–256 | DOI | MR | Zbl
[16] Morawetz C. S., “The eigenvalues of some stability problems involving viscosity”, J. Rat. Mech. Anal., 1 (1952), 579–603 | MR | Zbl