Associated contact metric structures on the $7$-dimensional unit sphere~$S^7$
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 44-57
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper, we construct new examples of associated contact metric structures $(\eta, \xi, \varphi, g^J)$
on the $7$-dimensional unit sphere $S^7$, other than standard.
The construction involved a Hopf bundle $\pi: S^7\to\mathbf{CP^3}$. This projection maps affinor $\varphi$ into an
almost complex structure $J$. Therefore, it became necessary to build new examples of associated
almost complex structures $J$ in the $3$-dimensional complex projective space  $\mathbf{CP^3}$.
Let $\Phi$ be a nondegenerate $2$-form (a Fubini–Study form). An almost complex structure $J$ is
called positively associated with the form $\Phi$ if the following conditions are satisfied for any
vector fields $X$, $Y$:
$$
\Phi(JX, JY)=\Phi(X, Y)\text{ and }\Phi(X, JX)>0, \text{ if } X\ne0.
$$ Each positively associated almost complex structure $J$ defines a Riemannian metric $g^J$  by the
equality $g(X, Y)=\Phi(X, JY)$; the metric is also called associated. The associated metric has the
following properties:
$$
g(JX, JY)=g(X, JY),\ g(JX, Y)=\Phi(X, Y).
$$ The positively associated almost complex structure can be obtained as follows: 
$$
J=J_0(1+R)(1-R)^{-1},
$$
where $R$ is a symmetric endomorphism $R: TCP^3\to TCP^3$ anticommuting with the standard
structure $J_0$,
$$
J_0=
\begin{pmatrix}
iI0\\
0-iI
\end{pmatrix}.
$$ In this paper, we have found a series of matrices $R$ satisfying these conditions. Each matrix of
this kind defines an associated almost complex structure in the space $\mathbf{CP^3}$. One of these matrices,
$$
R=\frac{1}{(1+|w|)^4}
\begin{pmatrix}
0 \overline{R_{\alpha}^{\overline{\beta}}}\\
R_{\alpha}^{\overline{\beta}}0
\end{pmatrix},
$$
where the block $R_{\alpha}^{\overline{\beta}}=\begin{pmatrix}
\overline{w}^1w^2w^3 0 0\\
0  w^1\overline{w}^2w^3 0\\
0 0 w^1w^2\overline{w}^3
\end{pmatrix}$, has been considered in more detail.
For this endomorphism, the relevant almost complex structure $J$ and a Hermite metric $g^J$  have
been found in the space $\mathbf{CP}^3$. It has been verified that the constructed structure $J$ is not integrable.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
contact structures
Keywords: associated contact metric structures, $7$-dimensional sphere.
                    
                  
                
                
                Keywords: associated contact metric structures, $7$-dimensional sphere.
@article{VTGU_2016_4_a4,
     author = {Ya. V. Slavolyubova},
     title = {Associated contact metric structures on the $7$-dimensional unit sphere~$S^7$},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {44--57},
     publisher = {mathdoc},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_4_a4/}
}
                      
                      
                    TY - JOUR AU - Ya. V. Slavolyubova TI - Associated contact metric structures on the $7$-dimensional unit sphere~$S^7$ JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2016 SP - 44 EP - 57 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VTGU_2016_4_a4/ LA - ru ID - VTGU_2016_4_a4 ER -
%0 Journal Article %A Ya. V. Slavolyubova %T Associated contact metric structures on the $7$-dimensional unit sphere~$S^7$ %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2016 %P 44-57 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VTGU_2016_4_a4/ %G ru %F VTGU_2016_4_a4
Ya. V. Slavolyubova. Associated contact metric structures on the $7$-dimensional unit sphere~$S^7$. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 44-57. http://geodesic.mathdoc.fr/item/VTGU_2016_4_a4/
