The properly Helmholtz plane as Finsler geometry
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 15-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

G.G. Mikhailichenko has built the complete classification of two-dimensional phenomenologically symmetric geometries, i.e. geometries for which the six mutual distances between the four arbitrary points are functionally connected. In these geometries, the distance is understood in the generalized sense as the value of a function called a metric. The validity of metric axioms is not supposed. All these geometries are endowed with the maximum mobility, that is, there are groups of motions of maximum dimensionality equal to $3$. Classification of such two-dimensional geometries includes both well-known geometries (Euclidean, the pseudo-Euclidean, symplectic, spherical, etc.), and unknown ones (the Helmholtz, pseudo-Helmholtz, dual Helmholtz, and simplicial geometries). In this paper, we use methods of Finsler geometry to study the properly Helmholtz twodimensional geometry. In the first section, we introduce the definition of the properly Helmholtz plane, and then we prove that it is a positive definite Finsler space (we check homogeneity and positivity of the metric function, as well as the positive definiteness of the Finsler metric tensor). The second section defines the properly Helmholtz two-dimensional manifold and proves that it is also a positive definite Finsler space. Then we calculate the basic Finsler tensor $C_{ijk}$ and additional $A_{ijk}$ tensor. With the help of these tensors, we find the Finsler scalar $J$ and prove that the special Finsler curvature tensor $S^i_{jkl}$ for the properly Helmholtz two-dimensional manifold is zero.
Keywords: metric function, the properly Helmholtz geometry, Finsler geometry.
@article{VTGU_2016_4_a1,
     author = {V. A. Kyrov},
     title = {The properly {Helmholtz} plane as {Finsler} geometry},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {15--22},
     year = {2016},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_4_a1/}
}
TY  - JOUR
AU  - V. A. Kyrov
TI  - The properly Helmholtz plane as Finsler geometry
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 15
EP  - 22
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_4_a1/
LA  - ru
ID  - VTGU_2016_4_a1
ER  - 
%0 Journal Article
%A V. A. Kyrov
%T The properly Helmholtz plane as Finsler geometry
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 15-22
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2016_4_a1/
%G ru
%F VTGU_2016_4_a1
V. A. Kyrov. The properly Helmholtz plane as Finsler geometry. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 15-22. http://geodesic.mathdoc.fr/item/VTGU_2016_4_a1/

[1] Mikhaylitchenko G. G., “Two-dimensional geometries”, Dokl. Akad. Nauk SSSR, 260:4 (1981), 803–805 | MR

[2] Michailichenko G. G., “On group and phenomenological symmetries in geometry”, Soviet Math. Dokl., 27:2 (1983), 325–326 | MR | Zbl

[3] Bogdanova R. A., “Groups of motions of two-dimensional Helmholtz geometries as a solution of a functional equation”, Siberian Journal of Industrial Mathematics, 12:4 (2009), 12–22

[4] Rund H., The differential geometry of Finsler spaces, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1959 | MR | MR | Zbl

[5] Kyrov V. A., “Two-dimensional Helmholtz spaces”, Siberian Mathematical Journal, 46:6 (2005), 1082–1096 | DOI | MR | Zbl

[6] Lev V. H., “Three-dimensional geometries in the theory of physical structures”, Computation Systems, 125, Institute of Mathematics Publ., Novosibirsk, 1988, 90–103 | Zbl