@article{VTGU_2016_4_a1,
author = {V. A. Kyrov},
title = {The properly {Helmholtz} plane as {Finsler} geometry},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {15--22},
year = {2016},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2016_4_a1/}
}
V. A. Kyrov. The properly Helmholtz plane as Finsler geometry. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2016), pp. 15-22. http://geodesic.mathdoc.fr/item/VTGU_2016_4_a1/
[1] Mikhaylitchenko G. G., “Two-dimensional geometries”, Dokl. Akad. Nauk SSSR, 260:4 (1981), 803–805 | MR
[2] Michailichenko G. G., “On group and phenomenological symmetries in geometry”, Soviet Math. Dokl., 27:2 (1983), 325–326 | MR | Zbl
[3] Bogdanova R. A., “Groups of motions of two-dimensional Helmholtz geometries as a solution of a functional equation”, Siberian Journal of Industrial Mathematics, 12:4 (2009), 12–22
[4] Rund H., The differential geometry of Finsler spaces, Springer-Verlag, Berlin–Gottingen–Heidelberg, 1959 | MR | MR | Zbl
[5] Kyrov V. A., “Two-dimensional Helmholtz spaces”, Siberian Mathematical Journal, 46:6 (2005), 1082–1096 | DOI | MR | Zbl
[6] Lev V. H., “Three-dimensional geometries in the theory of physical structures”, Computation Systems, 125, Institute of Mathematics Publ., Novosibirsk, 1988, 90–103 | Zbl