Numerical investigation of the influence of the “ExoMars” spacecraft propulsion system jets on erosion of the Mars surface
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 71-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper presents results of mathematical modeling of the effect caused by supersonic propulsion system jets on the surface of Mars during the descent of the ExoMars module. The action of propulsion system supersonic jets on the Mars surface was investigated numerically using the OpenFOAM software. According to results of the force action of supersonic jets on the Mars surface, the possible erosion of the Mars soil is estimated using Coulomb's law of shearing resistance. The soil model involves empirical constants which were obtained from previous Viking, Pathfinder, and MER space programs. The soil erosion during the landing of the spacecraft on the surface of Mars under the influence of the propulsion system at the maximum and minimum mode for loose, lumpy soil, and sand was investigated. During the numerical research, the distance from which soil erosion begins was revealed. The destructive force of propulsion system supersonic jets is greatest at one meter height and below. At the time of the spacecraft contacts with the surface of Mars at the maximum mode of the propulsion system, erosion of all soil types is possible except for the loose soil; for the minimum mode of the propulsion system, erosion is not observed.
Keywords: SC «ExoMars», mathematical modeling, supersonic jet, martian soil, shear strength.
Mots-clés : erosion, Mars
@article{VTGU_2016_2_a7,
     author = {A. M. Kagenov},
     title = {Numerical investigation of the influence of the {{\textquotedblleft}ExoMars{\textquotedblright}} spacecraft propulsion system jets on erosion of the {Mars} surface},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {71--81},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_2_a7/}
}
TY  - JOUR
AU  - A. M. Kagenov
TI  - Numerical investigation of the influence of the “ExoMars” spacecraft propulsion system jets on erosion of the Mars surface
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 71
EP  - 81
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_2_a7/
LA  - ru
ID  - VTGU_2016_2_a7
ER  - 
%0 Journal Article
%A A. M. Kagenov
%T Numerical investigation of the influence of the “ExoMars” spacecraft propulsion system jets on erosion of the Mars surface
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 71-81
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2016_2_a7/
%G ru
%F VTGU_2016_2_a7
A. M. Kagenov. Numerical investigation of the influence of the “ExoMars” spacecraft propulsion system jets on erosion of the Mars surface. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 71-81. http://geodesic.mathdoc.fr/item/VTGU_2016_2_a7/

[1] Khartov V. V., Martynov M. B., Luk'yanchikov A. V., Aleksashkin S. N., “Conceptual design of EXOMARS-2018 descent module developed by Lavchkin association”, Vestnik FGUP NPO im. S. A. Lavochkina — Scientific and technical quarterly journal “NPO imeni S. A. Lavochkina”. Vestnik, 2014, no. 2(23), 5–12 | MR

[2] Likhachev V. N., Fedotov V. P., “Control of EXOMARS SC landing module motion during its descent and landing on the Mars surface”, Vestnik FGUP NPO im. S. A. Lavochkina — Scientific and technical quarterly journal “NPO imeni S. A. Lavochkina”. Vestnik, 2014, no. 2(23), 58–64

[3] Vago J., Lorenzoni L., Calantropio F., Zashchirinskii A. M., “Selecting a landing site for the EXOMARS-2018 mission”, Vestnik FGUP NPO im. S. A. Lavochkina — Scientific and technical quarterly journal “NPO imeni S. A. Lavochkina”. Vestnik, 2014, no. 2(23), 42–46

[4] Glazunov A. A., Kagenov A. M., Eremin I. V., Kuvshinov N. E., “Numerical study of the interaction of the spacecraft propulsion systems supersonic jets with the surfaces under conditions of Mars”, Izvestiya vysshikh uchebnyh zavedeniy. Fizika — Russian Physics Journal, 57:8/2 (2014), 97–103

[5] Glazunov A. A., Eremin I. V., Kagenov A. M., Tyryshkin I. M., “Mathematical modeling of the interaction of the spacecraft propulsion systems supersonic jets with the surfaces”, Izvestiya vysshikh uchebnyh zavedeniy. Fizika — Russian Physics Journal, 56:9/3 (2013), 57–59 | MR | Zbl

[6] Glazunov A. A., Eremin I. V., Kagenov A. M., Tyryshkin I. M., “Application of OpenFOAM for calculates gas flows in nozzles and jets”, Izvestiya vysshikh uchebnyh zavedeniy. Fizika — Russian Physics Journal, 56:9/3 (2013), 66–68

[7] Menter F. R., Zonal Two Equation $k-\omega$ Turbulence Models for Aerodynamic Flows, AIAA Paper 93-2906, 1993, 1598–1605

[8] Kryzhanovskii L., “Coulomb's friction law and soil failure in a three-dimensional stress-strain state”, Hydrotechnical Construction, 16:12 (1982), 664–674 | DOI

[9] OpenFOAM C++ Documentation, OpenFOAM. Official website (accessed 11.01.2016)

[10] Toro E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer-Verlag, Berlin–Heidelberg, 2009, 315–344 | DOI | MR

[11] Golombek M. P., Huertas A., Marlow J., McGrane B., Klein C., Martinez M., Arvidson R. E., Heet T., Barry L., Seelos K., Adams D., Li W., Matijevic J. R., Parker T., Sizemore H. G., Mellon M., McEwen A. S., Tamppari L. K., Cheng Y., “Size-frequency distributions of rocks on the northern plains of Mars with special reference to Phoenix landing surfaces”, Journal of Geophysical Research: Planets, 113:E3 (2008)