Numerical investigation of the flow of combustion products containing high-dispersive aluminum powder in the solid-fuel rocket engine nozzles
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 63-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the numerical investigation of the flow of metalized fuel combustion products in the rocket engine nozzle cluster. The system of equations for the gas-droplet environment is written in the model of interpenetrating multispeed and multitemperature continua. The condensed phase is represented by an ensemble of polydisperse liquid alumina particles. Coagulation and fragmentation are taken into account due to the interaction both with each other and with the gas. The description of condensate particle interaction is based on the continuous approach of variation in the size distribution function. The dependence of two-phase losses of the engine on the size of aluminum oxide particles due to the nonequilibrium of the flow at the nozzle entrance is shown. Results of the numerical calculation of the quasi-one-dimensional steady flow of aluminized fuel combustion products in the profiled solid-fuel rocket engine nozzle are presented. Analysis of the calculation data suggests that the use of high-dispersed aluminum powder in composite solid propellants increases the specific impulse of the engine as compared to previously used powders.
Keywords: two-phase flow, particle size distribution function
Mots-clés : polydisperse ensemble, coagulation and fragmentation of particles.
@article{VTGU_2016_2_a6,
     author = {N. N. D'yachenko and L. I. D'yachenko and V. S. Gurova and S. A. Sineokaya},
     title = {Numerical investigation of the flow of combustion products containing high-dispersive aluminum powder in the solid-fuel rocket engine nozzles},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {63--70},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_2_a6/}
}
TY  - JOUR
AU  - N. N. D'yachenko
AU  - L. I. D'yachenko
AU  - V. S. Gurova
AU  - S. A. Sineokaya
TI  - Numerical investigation of the flow of combustion products containing high-dispersive aluminum powder in the solid-fuel rocket engine nozzles
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 63
EP  - 70
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_2_a6/
LA  - ru
ID  - VTGU_2016_2_a6
ER  - 
%0 Journal Article
%A N. N. D'yachenko
%A L. I. D'yachenko
%A V. S. Gurova
%A S. A. Sineokaya
%T Numerical investigation of the flow of combustion products containing high-dispersive aluminum powder in the solid-fuel rocket engine nozzles
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 63-70
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2016_2_a6/
%G ru
%F VTGU_2016_2_a6
N. N. D'yachenko; L. I. D'yachenko; V. S. Gurova; S. A. Sineokaya. Numerical investigation of the flow of combustion products containing high-dispersive aluminum powder in the solid-fuel rocket engine nozzles. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 63-70. http://geodesic.mathdoc.fr/item/VTGU_2016_2_a6/

[1] Vasenin I. M. et al., Gas dynamics of two-phase flows in nozzles, Tomsk State University, Tomsk, 1986, 262 pp.

[2] Shrayber A. A., “Multiphase polydisperse flows with variable fractional composition of discrete inclusions”, Itogi Nauki i Tekhniki. Complex and special sections of mechanics, 3, VINITI, M., 1988, 3–80

[3] Alemasov V. E., Dregalin A. F., Tishin A. P., Theory of rocket engines, Mashinostroenie, M., 1989

[4] Pirumov U. G., Roslyakov G. S., Gas dynamics of nozzles, Nauka, M., 1990, 366 pp.

[5] Sternin L. E., Shrayber A. A., Multiphase flows of gas with particles, Mashinostroenie, M., 1994

[6] De Luca L. T., Galfetti L., Severini F. et al., “Burning of nano-aluminized composite rocket propellants”, Fizika goreniya i vzryva - Combustion, Explosion, and Shock Waves, 41:6 (2005), 680–692 | DOI

[7] Vorozhtsov A. B. et al., “The impact of application of nanoaluminum on gas dynamics of high-energy systems”, Tomsk State University Journal of Mathematics and Mechanics, 2014, no. 2(28), 45–57