Special functions generated by rising and central factorial powers
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 19-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Replacing in the well-known series $\cos x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)!}$, $\sin x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)!}$ falling factorial powers ($m!=m^{\underline{m}}$) by rising and central factorial powers ($m^{\overline{m}}$ and $m^{[m]}$ respectively), we obtain real functions $\mathrm{Cos}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)^{\overline{2n}}}$, $\mathrm{Sin}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^{\overline{2n+1}}}$, $\mathrm{Cosc}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n}}{(2n)^{[2n]}}$, and $\mathrm{Sinc}\, x=\sum\limits_{n=0}^\infty\frac{(-1)^nx^{2n+1}}{(2n+1)^{[2n+1]}}$. In this paper, we consider the non-elementary Fresnel-type integral functions $C_1(x)=\int\limits_0^x\mathrm{Cos}\,t^2 dt$, $S_1(x)=\int\limits_0^x\mathrm{Sin}\,t^2 dt$, $C_2(x)=\int\limits_0^x\mathrm{Cosc}\,t^2 dt$, $S_2(x)=\int\limits_0^x\mathrm{Sinc}\,t^2 dt$. We prove the following formulas: \begin{gather*} C_1(x)=4\left(\cos\frac{x^2}4 C\left(\frac x2\right)+\sin\frac{x^2}4 S\left(\frac x2\right)\right)-x,\\ S_1(x)=4\left(\sin\frac{x^2}4 C\left(\frac x2\right)-\cos\frac{x^2}4 S\left(\frac x2\right)\right),\\ C_2(x)=x-\frac{x^5}{20}{}_2F_3\left(1,\frac54;\frac43,\frac53,\frac94;-\frac{x^4}{27}\right),\quad S_2(x)=\frac{x^3}3{}_2F_3\left(\frac34,1;\frac56,\frac76,\frac74;-\frac{x^4}{27}\right), \end{gather*} where $C(p)$ and $S(p)$ are Fresnel integrals and $_2F_3(a_1,a_2;b_1,b_2,b_3;z)$ is a generalized hypergeometric function. We also show that functions $C_1(x)$, $S_1(x)$ are solutions of the ordinary linear second-order differential equations $4xy''-4y'+x^3y=-x^4-4$ and $4xy''-4y'+x^3y=4x^2$, respectively, and the functions $C_2(x)$, $S_2(x)$ are solutions of the ordinary linear fourth-order differential equations $27x^3y^{IV}-135x^2y'''+(16x^5+339)y''-384y'=-384$ and $27x^3y^{IV}-81x^2y'''+(16x^5+177x)y''+(32x^4-192)y'=0$, respectively.
Keywords: rising factorial power, central factorial power, Fresnel integrals, generalized hypergeometric function, Cauchy problem.
@article{VTGU_2016_2_a1,
     author = {T. P. Goy},
     title = {Special functions generated by rising and central factorial powers},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {19--32},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2016_2_a1/}
}
TY  - JOUR
AU  - T. P. Goy
TI  - Special functions generated by rising and central factorial powers
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2016
SP  - 19
EP  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VTGU_2016_2_a1/
LA  - ru
ID  - VTGU_2016_2_a1
ER  - 
%0 Journal Article
%A T. P. Goy
%T Special functions generated by rising and central factorial powers
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2016
%P 19-32
%N 2
%U http://geodesic.mathdoc.fr/item/VTGU_2016_2_a1/
%G ru
%F VTGU_2016_2_a1
T. P. Goy. Special functions generated by rising and central factorial powers. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 2 (2016), pp. 19-32. http://geodesic.mathdoc.fr/item/VTGU_2016_2_a1/

[1] Goy T. P., Zatorsky R. A., “New functions generated by rising factorial powers and their properties”, Bukovyna Math. Journal, 1:1–2 (2013), 28–33 (In Ukrainian) | MR

[2] Goy T. P., “Non-elementary functions generated by central factorial powers”, Bulletin of V. N. Karazin Kharkiv National University. Series: Mathematics, Applied Mathematics and Mechanics, 2014, no. 1133, 131–139 (In Ukrainian)

[3] Goy T. P., “On central factorial powers and some of their applications”, Mathematics and mathematical education. Theory and practice, 9, YSTU, Yaroslavl, 2014, 30–35

[4] Goy T. P., Zatorsky R. A., “New integral functions generated by rising factorial powers”, Carpathian Math. Publ., 5:2 (2013), 217–224 | DOI | MR | Zbl

[5] Goy T. P., Zatorsky R. A., “On a nonelementary function of the Dawson's integral type”, Bulletin of Taras Shevchenko Kyiv National University. Series: Physics and Mathematics, 2014, no. 1, 15–19

[6] Goy T. P., “Integrals of functions generated by rising factorial powers”, Taurida Journal of Computer Science and Mathematics, 24:1 (2014), 14–22 (in Ukrainian)

[7] Goy T. P., “New functions defined by factorial powers”, Mathematical and Computer Modelling. Series: Physical and mathematical sciences, 2014, no. 11, 18–29 (in Ukrainian)

[8] Goy T. P., “On differential equations of functions defined by rising and central factorials”, Modern Problems of the Analysis of Dynamic Systems. Appendices in Equipment Technologies, Proc. Intern. Conf., v. 1, VSFA, Voronezh, 2014, 58–61 | DOI | MR

[9] Jordan C., Calculus of Finite Differences, Chelsea Publishing, N.Y., 1939 | MR

[10] Steffensen J. F., “On the definition of the central factorial”, J. Inst. Actuaries, 64:2 (1933), 165–168

[11] Graham R. L., Knuth D. E., Patashnik O., Concrete Mathmatics. A Foundation for Computer Science, Addison Wesley, 1994, 672 pp. | MR

[12] Zatorsky R. A., Malarchuk A. R., “Factorial powers and triangular matrices”, Carpathian Math. Publ., 1:2 (2009), 161–171 (In Ukrainian) | MR | Zbl

[13] Comtet L., Advanced Combinatorics: The Art of Finite and Infinite Expansions, D. Reider Publishing, 1974 | MR | Zbl

[14] Roman S., The Umbral Calculus, Academic Press, 1984 | MR | Zbl

[15] Abramowitz M., Stegun I. A. (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publication, 1972 | MR

[16] Bateman H., Erdelyi A., Higher Transcendental Functions, v. 1, McGraw-Hill, 1953 | MR