On a paper by Khmyleva and Bukhtina
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 56-59
Cet article a éte moissonné depuis la source Math-Net.Ru
It is well know that every separable Hilbert space possesses an orthonormal Schauder bases, i.e. a Schauder bases $\{x_n\}_{n=1}^\infty$, for which $||x||=1$ and $(x_n,x_m)=0$ for any $n, m\in N$, $n\ne m$. In this note, we consider a sequence of elements in a Hilbert space for which angles between any two terms are equal and different from zero. Basicity and some other properties of such systems are investigated. In particular, a short proof of a result by Khmyleva and Bukhtina is provided and a more general form of this result is stated.
Mots-clés :
Schauder bases
Keywords: system of representation, Hilbert space, orthonormal system.
Keywords: system of representation, Hilbert space, orthonormal system.
@article{VTGU_2015_6_a6,
author = {A. Sh. Shukurov},
title = {On a paper by {Khmyleva} and {Bukhtina}},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {56--59},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2015_6_a6/}
}
A. Sh. Shukurov. On a paper by Khmyleva and Bukhtina. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 56-59. http://geodesic.mathdoc.fr/item/VTGU_2015_6_a6/
[1] Khmyleva T. E., Bukhtina I. P., “O nekotoroy posledovatel'nosti elementov v gil'bertovom prostranstve, ne yavlyayushcheysya bazisom”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2007, no. 1(1), 58–62 (in Russian)
[2] Lyusternik L. A., Sobolev V. I., Kratkiy kurs funktsional'nogo analiza, Vysshaya shkola Publ., M., 1982 (in Russian) | MR
[3] Kirillov A. A., Gvishiani A. D., Teoremy i zadachi funktsionalnogo analiza, Nauka, M., 1979 | MR
[4] Danford N., Shvarts Dzh., Lineinye operatory: obschaya teoriya, IL, M., 1962