On a paper by Khmyleva and Bukhtina
    
    
  
  
  
      
      
      
        
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 56-59
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is well know that every separable Hilbert space possesses an orthonormal Schauder bases, i.e. a Schauder bases $\{x_n\}_{n=1}^\infty$, for which $||x||=1$ and $(x_n,x_m)=0$ for any $n, m\in N$, $n\ne m$. In this note, we consider a sequence of elements in a Hilbert space for which angles between any two terms are equal and different from zero. Basicity and some other properties of such systems are investigated. In particular, a short proof of a result by Khmyleva and Bukhtina is provided and a more general form of this result is stated.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
Schauder bases
Keywords: system of representation, Hilbert space, orthonormal system.
                    
                  
                
                
                Keywords: system of representation, Hilbert space, orthonormal system.
@article{VTGU_2015_6_a6,
     author = {A. Sh. Shukurov},
     title = {On a paper by {Khmyleva} and {Bukhtina}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {56--59},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_6_a6/}
}
                      
                      
                    A. Sh. Shukurov. On a paper by Khmyleva and Bukhtina. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 56-59. http://geodesic.mathdoc.fr/item/VTGU_2015_6_a6/
