Left-invariant measures on topological $n$-ary subsemigroup of binary groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 50-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Convolutions of measures and functions, as well as the Fourier transform of measures on locally compact Abelian $n$-ary groups were introduced in [1]. Development of harmonic analysis on $n$-ary algebraic objects endowed with a topology is closely related to the existence of a non-zero invariant measure on such objects. Invariant measures on topological $n$-ary semigroups were considered in [2] and [3]. In Theorem 2 of this paper, we establish necessary and sufficient conditions for the existence of a left-invariant measure on topological $n$-ary subsemigroups of binary groups. It can be treated as an extension of the results of [4] to the case of $n$-ary topological semigroups. The result established in Theorem 1 establishes is interesting for topological algebra.
Keywords: left-invariant measure, topological $n$-ary semigroup, ideal of an $n$-ary semigroup.
@article{VTGU_2015_6_a5,
     author = {D. V. Sergeeva},
     title = {Left-invariant measures on topological $n$-ary subsemigroup of binary groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {50--55},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_6_a5/}
}
TY  - JOUR
AU  - D. V. Sergeeva
TI  - Left-invariant measures on topological $n$-ary subsemigroup of binary groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 50
EP  - 55
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_6_a5/
LA  - ru
ID  - VTGU_2015_6_a5
ER  - 
%0 Journal Article
%A D. V. Sergeeva
%T Left-invariant measures on topological $n$-ary subsemigroup of binary groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 50-55
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2015_6_a5/
%G ru
%F VTGU_2015_6_a5
D. V. Sergeeva. Left-invariant measures on topological $n$-ary subsemigroup of binary groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 50-55. http://geodesic.mathdoc.fr/item/VTGU_2015_6_a5/

[1] Mukhin V. V., Sergeeva D. V., “Teorema dvoystvennosti dlya lokal'no kompaktnykh abelevykh $n$-grupp”, Sibirskiy matematicheskiy zhurnal, 2008, no. 6, 1361–1368 (in Russian)

[2] Mukhin V. V., “Invariantnye mery na topologicheskikh $n$-polugruppakh”, Vestsi NAN Belarusi. Ser. fiz. mat. navuk, 2000, no. 4, 16–21 (in Russian)

[3] Sergeeva D. V., “O sushchestvovanii invariantnykh mer na topologicheskikh abelevykh $n$-arnykh polugruppakh s sokrashcheniyami”, Vestnik IzhGTU. Matematika, 2013, no. 2, 140–141 (in Russian)

[4] Mukhin V. V., “Invauiant measurcs on topologicals semigroups which have on ideal with open translation mappings”, Semigroup Forum, 62 (2001), 159–172 | DOI | MR | Zbl

[5] Rusakov S. A., Algebraicheskie $n$-arnye sistemy: Silovskaya teoriya $n$-arnykh grupp, Navuka i tekhnika Publ., Minsk, 1992, 264 pp. (in Russian)

[6] Mukhin V. V., Filipova E. E., “O prodolzhenii topologii s sistemy obrazuyushchikh gruppy do topologii na gruppe”, Izvestiya vuzov. Matematika, 2009, no. 6, 37–41 (in Russian)