Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 33-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study two-dimensional vector boundary Fredholm integral equations of the second kind with an operator kernel expressed in terms of a spatial-temporal $C_0$-semigroup. Such two-dimensional integral equations allow one to obtain solutions of vector boundary value problems of the first, second, and third kind for linear differential-operator equations $\Delta_2u=Bu$ in a planar bounded simply connected domain $\Omega^+$ or its exterior $\Omega^-\equiv R^2\setminus\overline{\Omega^+}$. The operator coefficient $\mathbf{B}$ is a generator of the $C_0$-semigroup in space $L_2(I_Y\times I_T)$ ($I_Y\equiv[0, Y]$, $I_T\equiv[0, T]$). In turn, these boundary value problems are possible formulations of initial boundary value problems of heat conduction on the time interval $I_T$ in a homogeneous cylinder $\Omega^+\times I_Y$ or $\Omega^-\times I_Y$ with inhomogeneous boundary conditions of the first, second, and third kind on the lateral surface of the cylinder, zero boundary conditions of the first, second, or third kind (depending on the operator $\mathbf{B}$) on the cylinder bases and zero initial conditions. The main result of this paper is as follows: under condition $\partial\Omega\in C^{k+2}$, the spaces $C^k(\partial\Omega, H_{B}^n(I_Y\times I_T))$ are invariant with respect to direct and inverse operators of the integral equations, and such operators are bounded in these spaces. Here, $C^k(\partial\Omega, H_{B}^n(I_Y\times I_T))$ is the space of vector functions, $k$ times continuously differentiable on the border $\partial\Omega$ with values in the Sobolev type space $H_{B}^n(I_Y\times I_T)$ defined by powers $n+1$ of the operator $B$.
Keywords: boundary integral equation, heat conduction, uniqueness, regularity.
Mots-clés : existence
@article{VTGU_2015_6_a3,
     author = {D. Yu. Ivanov},
     title = {Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {33--45},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/}
}
TY  - JOUR
AU  - D. Yu. Ivanov
TI  - Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 33
EP  - 45
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/
LA  - ru
ID  - VTGU_2015_6_a3
ER  - 
%0 Journal Article
%A D. Yu. Ivanov
%T Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 33-45
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/
%G ru
%F VTGU_2015_6_a3
D. Yu. Ivanov. Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 33-45. http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/

[1] Maz'ya V. G., “Granichnye integral'nye uravneniya”, Analiz-4, Itogi nauki i tekhniki. Seriya «Sovremennye problemy matematiki». Fundamental'nye napravleniya, 27, VINITI Publ., M., 1988, 131–228 (in Russian) | MR

[2] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary element techniques, Springer-Verlag, 1984, 464 pp. | MR | Zbl

[3] Onishi K., “Convergence in the boundary element method for heat equation”, Teaching for Robust Understanding of Mathematics, 17 (1981), 213–225 | MR | Zbl

[4] Mcintire E. A. (Jr.), “Boundary integral solutions for the heat equation”, Mathematics of computation, 46:173 (1986), 71–79 | DOI | MR

[5] Costabel M., “Bounndary integral operators for the heat equation”, Integral Equation Operator Theory, 13:4 (1990), 498–552 | DOI | MR | Zbl

[6] Noon P. J., The single layer heat potential and Galerkin boundary element methods for the heat equation, Ph. D. Thesis, University of Maryland, 1988 | MR

[7] Shirota K., Onishi K., “A boundary element Galerkin method for the Dirichlet problem of the heat equation in non-smooth domain”, Scientiae Mathematicae, 1:1 (1998), 107–123 | MR | Zbl

[8] Hongtao Y., “On the convergence of boundary element methods for initial-Neumann problems for the heat equation”, Mathematics of computation, 68:226 (1999), 547–557 | DOI | MR | Zbl

[9] Arnold D. N., Noon P. J., “Coercivity of the single layer heat potential”, Journal of Computational Mathematics, 7:2 (1989), 100–104 | MR | Zbl

[10] Hongtao Y., “A new analysis of Volterra–Fredholm boundary integral equations of second kind”, Northeastern Mathematical Journal, 13:3 (1997), 325–334 | MR | Zbl

[11] Ivanov D. Yu., “Solution of two-dimensional boundary-value problems corresponding to initial-boundary value problems of diffusion on a right cylinder”, Differential equations, 46:8 (2010), 1104–1113 | MR | Zbl

[12] Ivanov D. Yu., “Ekonomichnyy metod vychisleniya operatorov, razreshayushchikh nekotorye zadachi teploprovodnosti v pryamykh tsidindrakh”, Aktual'nye problemy gumanitarnykh i estestvennykh nauk, 2014, no. 9, 16–32 (in Russian)

[13] Ivanov D. Yu., “Vychislenie operatorov, razreshayushchikh zadachi teploprovodnosti v pryamykh tsilindrakh, s ispol'zovaniem polugruppovoy simmetrii”, Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universitetata MAMI, 4:4(22) (2014), 26–38 (in Russian)

[14] Ivanov D. Yu., “Analiz dvumernykh granichnykh integral'nykh uravneniy, opredelyayushchikh resheniya zadach teploprovodnosti v pryamykh tsilindrakh”, Perspektivy nauki, 2014, no. 12(63), 103–109 (in Russian)

[15] Ivanov D. Yu., “Zamknutost' summ differentsial'nykh operatorov, voznikayushchikh v zadachakh teploprovodnosti v prostranstvakh $L_2$”, Dinamika neodnorodnykh sistem, Tr. In-ta sistemnogo analiza RAN, 9(1), KomKniga Publ., M., 2005, 111–123 (in Russian)

[16] Fikhtengol'ts G. M., Kurs differentsial'nogo i integral'nogo ischisleniya, v. 2, Fizmatlit Publ., M., 2001, 810 pp. (in Russian)

[17] Kreyn S. G., Lineynye differentsial'nye uravneniya v banakhovom prostranstve, Nauka Publ., M., 1967, 464 pp. (in Russian) | MR

[18] Ivanov D. Yu., “Reshenie v prostranstve $L_2$ integral'nogo uravneniya, sootvetstvuyushchego zadache teploprovodnosti v odnorodnom pryamom tsilindre na vremennoy poluosi”, Aktual'nye problemy gumanitarnykh i estestvennykh nauk, 2013, no. 11-1, 20–25 (in Russian)