Mots-clés : existence
@article{VTGU_2015_6_a3,
author = {D. Yu. Ivanov},
title = {Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {33--45},
year = {2015},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/}
}
TY - JOUR AU - D. Yu. Ivanov TI - Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2015 SP - 33 EP - 45 IS - 6 UR - http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/ LA - ru ID - VTGU_2015_6_a3 ER -
%0 Journal Article %A D. Yu. Ivanov %T Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2015 %P 33-45 %N 6 %U http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/ %G ru %F VTGU_2015_6_a3
D. Yu. Ivanov. Stable solvability in spaces of differentiable functions of some two-dimensional integral equations of heat conduction with an operator-semigroup kernel. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 33-45. http://geodesic.mathdoc.fr/item/VTGU_2015_6_a3/
[1] Maz'ya V. G., “Granichnye integral'nye uravneniya”, Analiz-4, Itogi nauki i tekhniki. Seriya «Sovremennye problemy matematiki». Fundamental'nye napravleniya, 27, VINITI Publ., M., 1988, 131–228 (in Russian) | MR
[2] Brebbia C. A., Telles J. C. F., Wrobel L. C., Boundary element techniques, Springer-Verlag, 1984, 464 pp. | MR | Zbl
[3] Onishi K., “Convergence in the boundary element method for heat equation”, Teaching for Robust Understanding of Mathematics, 17 (1981), 213–225 | MR | Zbl
[4] Mcintire E. A. (Jr.), “Boundary integral solutions for the heat equation”, Mathematics of computation, 46:173 (1986), 71–79 | DOI | MR
[5] Costabel M., “Bounndary integral operators for the heat equation”, Integral Equation Operator Theory, 13:4 (1990), 498–552 | DOI | MR | Zbl
[6] Noon P. J., The single layer heat potential and Galerkin boundary element methods for the heat equation, Ph. D. Thesis, University of Maryland, 1988 | MR
[7] Shirota K., Onishi K., “A boundary element Galerkin method for the Dirichlet problem of the heat equation in non-smooth domain”, Scientiae Mathematicae, 1:1 (1998), 107–123 | MR | Zbl
[8] Hongtao Y., “On the convergence of boundary element methods for initial-Neumann problems for the heat equation”, Mathematics of computation, 68:226 (1999), 547–557 | DOI | MR | Zbl
[9] Arnold D. N., Noon P. J., “Coercivity of the single layer heat potential”, Journal of Computational Mathematics, 7:2 (1989), 100–104 | MR | Zbl
[10] Hongtao Y., “A new analysis of Volterra–Fredholm boundary integral equations of second kind”, Northeastern Mathematical Journal, 13:3 (1997), 325–334 | MR | Zbl
[11] Ivanov D. Yu., “Solution of two-dimensional boundary-value problems corresponding to initial-boundary value problems of diffusion on a right cylinder”, Differential equations, 46:8 (2010), 1104–1113 | MR | Zbl
[12] Ivanov D. Yu., “Ekonomichnyy metod vychisleniya operatorov, razreshayushchikh nekotorye zadachi teploprovodnosti v pryamykh tsidindrakh”, Aktual'nye problemy gumanitarnykh i estestvennykh nauk, 2014, no. 9, 16–32 (in Russian)
[13] Ivanov D. Yu., “Vychislenie operatorov, razreshayushchikh zadachi teploprovodnosti v pryamykh tsilindrakh, s ispol'zovaniem polugruppovoy simmetrii”, Izvestiya Moskovskogo gosudarstvennogo tekhnicheskogo universitetata MAMI, 4:4(22) (2014), 26–38 (in Russian)
[14] Ivanov D. Yu., “Analiz dvumernykh granichnykh integral'nykh uravneniy, opredelyayushchikh resheniya zadach teploprovodnosti v pryamykh tsilindrakh”, Perspektivy nauki, 2014, no. 12(63), 103–109 (in Russian)
[15] Ivanov D. Yu., “Zamknutost' summ differentsial'nykh operatorov, voznikayushchikh v zadachakh teploprovodnosti v prostranstvakh $L_2$”, Dinamika neodnorodnykh sistem, Tr. In-ta sistemnogo analiza RAN, 9(1), KomKniga Publ., M., 2005, 111–123 (in Russian)
[16] Fikhtengol'ts G. M., Kurs differentsial'nogo i integral'nogo ischisleniya, v. 2, Fizmatlit Publ., M., 2001, 810 pp. (in Russian)
[17] Kreyn S. G., Lineynye differentsial'nye uravneniya v banakhovom prostranstve, Nauka Publ., M., 1967, 464 pp. (in Russian) | MR
[18] Ivanov D. Yu., “Reshenie v prostranstve $L_2$ integral'nogo uravneniya, sootvetstvuyushchego zadache teploprovodnosti v odnorodnom pryamom tsilindre na vremennoy poluosi”, Aktual'nye problemy gumanitarnykh i estestvennykh nauk, 2013, no. 11-1, 20–25 (in Russian)