Lines close to geodetic lines on a paraboloid
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 5-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem posed in [1] has been completely solved. Properties of the line at which a paraboloid of revolution intersects a demiquadric are updated with facts convincing that the selected approach is feasible for constructing lines lying on the paraboloid, close to geodetic lines, and having properties comfortable enough to use them as tailoring lines of a metallic mesh. The main result is a demonstration of proximity of principal normals of the identified lines (they are called SG-lines) and geodetic lines.
Mots-clés : paraboloid, demiquadrics
Keywords: geodetic line, normal congruence, ruled space.
@article{VTGU_2015_6_a0,
     author = {M. S. Bukhtyak},
     title = {Lines close to geodetic lines on a paraboloid},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--17},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_6_a0/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
TI  - Lines close to geodetic lines on a paraboloid
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 5
EP  - 17
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_6_a0/
LA  - ru
ID  - VTGU_2015_6_a0
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%T Lines close to geodetic lines on a paraboloid
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 5-17
%N 6
%U http://geodesic.mathdoc.fr/item/VTGU_2015_6_a0/
%G ru
%F VTGU_2015_6_a0
M. S. Bukhtyak. Lines close to geodetic lines on a paraboloid. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 6 (2015), pp. 5-17. http://geodesic.mathdoc.fr/item/VTGU_2015_6_a0/

[1] Bukhtyak M. S., “Normal'naya kongruentsiya paraboloida. Demikvadriki”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 5(37), 5–19 (in Russian)

[2] Kartan E., Metod podvizhnogo repera, teoriya nepreryvnykh grupp i obobshchennye prostranstva, M.–L., 1933, 72 pp. (in Russian)

[3] Finikov S. P., Proektivno-differentsial'naya geometriya, ONTI NKTP Publ., GTTL Publ., M.–L., 1937, 263 pp. (in Russian)

[4] de Ram Zh., Differentsiruemye mnogoobraziya, IL Publ., M., 1956, 250 pp. (in Russian)

[5] Bukhtyak M. S., “Ob odnom perenesenii”, Geometricheskiy sbornik, 20, TGU Publ., Tomsk, 1979, 44–51 (in Russian) | Zbl

[6] Matematicheskaya entsiklopediya, v. 2, Sovetskaya entsiklopediya Publ., M., 1979, 1103 pp. (in Russian)

[7] Proceedings of the International Geometry Center, 4:1 (2011), 64 pp.

[8] http://www.resolventa.ru/spr/planimetry/mline.htm

[9] Rashevskiy P. K., Kurs differentsial'noy geometrii, GITTL Publ., M.–L., 1950, 428 pp. (in Russian)