Keywords: contact form, contact metric structure.
@article{VTGU_2015_5_a3,
author = {A. G. Sedykh},
title = {Contact metric structures on 3-dimentional non-unimodular {Lie} groups},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {48--55},
year = {2015},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2015_5_a3/}
}
A. G. Sedykh. Contact metric structures on 3-dimentional non-unimodular Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 48-55. http://geodesic.mathdoc.fr/item/VTGU_2015_5_a3/
[1] Blair D. E., Contact manifold in Riemannian geometry, Lecture Notes in Mathematics, Springer Verlag, Berlin–Heidelberg–New York, 1976 | MR
[2] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Editorial URSS Publ., M., 1998 (in Russian) | MR
[3] Kobayasi Sh., Nomidzu K., Osnovy differentsial'noy geometrii, Nauka Publ., M., 1981 (in Russian)
[4] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Advances in Math., 21 (1976), 293–329 | DOI | MR | Zbl
[5] Sedykh A. G., Kontaktnye struktury na trekhmernykh gruppakh Li, LAP LAMBERT Academic Publishing, 2013 (in Russian)
[6] Smolentsev N. K., “Prostpanstva rimanovykh metrik”, Sovremennaya matematika i ee prilozheniya, 31, 2003, 69–126 (in Russian) | MR
[7] Smolentsev N. K., “Assotsiirovannye pochti kompleksnye struktury i (psevdo) rimanovy metriki na gruppakh $\mathrm{GL(2,\mathbf{R})}$ i $\mathrm{GL(2,\mathbf{R})}\times\mathbf{R}$”, Vestnik Kemerovskogo gosudarstvennogo universiteta, 2005, no. 4(24), 155–162 (in Russian)