Contact metric structures on 3-dimentional non-unimodular Lie groups
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 48-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Definition 1. A differentiable $(2n+1)$-dimensional manifold $M$ of the class $C^\infty$ is called a contact manifold if there exists a differential $1$-form $\eta$ on $M^{2n+1}$, such that $(\eta\land d\eta)^n\ne0$. The form $\eta$ is called a contact form. Definition 2. If $M^{2n+1}$ is a contact manifold with a contact form $\eta$, then a contact metric structure is the quadruple $(\eta,\xi,\varphi,g)$, where $\xi$ is a Reeb’s field, $g$ is a Riemannian metric, and $\varphi$ is an affinor on $M^{2n+1}$, for which the following properties are valid: $\varphi^2=-I+\eta\otimes\xi$, $d\eta(X,Y)=g(X,\varphi Y)$, $g(\varphi X,\varphi Y)=g(X,Y)-\eta(X)\eta(Y)$. We consider a non-unimodular Lie group $G$; its Lie algebra has a basis $e_1$, $e_2$, $e_3$ such that $[e_1,e_2]=\alpha e_2+\beta e_3$, $[e_1,e_3]=\gamma e_2+\delta e_3$, $[e_2,e_3]=0$, and matrix $A=\begin{pmatrix}\alpha & \beta\\ \gamma & \delta\end{pmatrix}$ has a trace $\alpha+\delta=2$. The left invariant $1$-form $\eta=a_1\theta^1+a_2\theta^2+a_3\theta^3$ defines a contact structure on the group $G$ if $(\delta-\alpha)a_2a_3-\beta a_3^2+\gamma a_2^2\ne0$. As a contact form, we choose the simplest one, $\eta=\theta^3$, $\varphi_0=\begin{pmatrix}0&-1&0\\ 1&0&0\\ 0&0&0\end{pmatrix}$, and consider other metrics that also define a contact metric form. We obtain that a contact metric structure on a non-unimodular Lie group can be set by the quadruple $(\eta,\xi,\varphi,g)$, where $$ \eta=\theta^3, \quad \xi=e_3, \quad, \varphi= \begin{pmatrix} \frac{2\rho\sin\alpha_1}{-1+\rho^2} & \frac{-1+2\rho\cos\alpha_1-\rho^2}{1-\rho^2} & 0\\ \frac{1+2\rho\cos\alpha_1+\rho^2}{1-\rho^2} & \frac{2\rho\sin\alpha_1}{1-\rho^2} & 0\\ 0& 0& 1 \end{pmatrix}. $$
Mots-clés : Lie group
Keywords: contact form, contact metric structure.
@article{VTGU_2015_5_a3,
     author = {A. G. Sedykh},
     title = {Contact metric structures on 3-dimentional non-unimodular {Lie} groups},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {48--55},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_5_a3/}
}
TY  - JOUR
AU  - A. G. Sedykh
TI  - Contact metric structures on 3-dimentional non-unimodular Lie groups
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 48
EP  - 55
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_5_a3/
LA  - ru
ID  - VTGU_2015_5_a3
ER  - 
%0 Journal Article
%A A. G. Sedykh
%T Contact metric structures on 3-dimentional non-unimodular Lie groups
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 48-55
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2015_5_a3/
%G ru
%F VTGU_2015_5_a3
A. G. Sedykh. Contact metric structures on 3-dimentional non-unimodular Lie groups. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 48-55. http://geodesic.mathdoc.fr/item/VTGU_2015_5_a3/

[1] Blair D. E., Contact manifold in Riemannian geometry, Lecture Notes in Mathematics, Springer Verlag, Berlin–Heidelberg–New York, 1976 | MR

[2] Dubrovin B. A., Novikov S. P., Fomenko A. T., Sovremennaya geometriya. Metody i prilozheniya, Editorial URSS Publ., M., 1998 (in Russian) | MR

[3] Kobayasi Sh., Nomidzu K., Osnovy differentsial'noy geometrii, Nauka Publ., M., 1981 (in Russian)

[4] Milnor J., “Curvatures of left invariant metrics on Lie groups”, Advances in Math., 21 (1976), 293–329 | DOI | MR | Zbl

[5] Sedykh A. G., Kontaktnye struktury na trekhmernykh gruppakh Li, LAP LAMBERT Academic Publishing, 2013 (in Russian)

[6] Smolentsev N. K., “Prostpanstva rimanovykh metrik”, Sovremennaya matematika i ee prilozheniya, 31, 2003, 69–126 (in Russian) | MR

[7] Smolentsev N. K., “Assotsiirovannye pochti kompleksnye struktury i (psevdo) rimanovy metriki na gruppakh $\mathrm{GL(2,\mathbf{R})}$ i $\mathrm{GL(2,\mathbf{R})}\times\mathbf{R}$”, Vestnik Kemerovskogo gosudarstvennogo universiteta, 2005, no. 4(24), 155–162 (in Russian)