The choice of a regression model of the body weight on the height via an empirical bridge
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 35-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An empirical bridge can be used for analysis of correspondance between regression models and observed data. If a model does not describe data correctly, then its response values deviate systematically from the regression curve, and this deviation can be revealed by summing the regression residuals. One needs to know the limiting distribution of the process for centered and normalized partial sums of regression residuals to study significance of these deviations. This process is the empirical bridge. We obtain a limiting process for a simple linear regression model. The main goal of this article is to apply the empirical bridge for the analysis of regression models describing the dependence of an individual’s body weight on his height. We considered a number of regression models of this dependence and compared models based on their empirical bridges. We used data on the height and weight of female students of the first course of Volga State Medical University. The study revealed the best model $\ln W_i=a+2\ln H_i+\varepsilon_i$. This model should be used for analysis of deviations from the normal body weight.
Keywords: linear regression, empirical bridge, dependence of weight on height.
@article{VTGU_2015_5_a2,
     author = {A. P. Kovalevskii and E. V. Shatalin},
     title = {The choice of a regression model of the body weight on the height via an empirical bridge},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {35--47},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_5_a2/}
}
TY  - JOUR
AU  - A. P. Kovalevskii
AU  - E. V. Shatalin
TI  - The choice of a regression model of the body weight on the height via an empirical bridge
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 35
EP  - 47
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_5_a2/
LA  - ru
ID  - VTGU_2015_5_a2
ER  - 
%0 Journal Article
%A A. P. Kovalevskii
%A E. V. Shatalin
%T The choice of a regression model of the body weight on the height via an empirical bridge
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 35-47
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2015_5_a2/
%G ru
%F VTGU_2015_5_a2
A. P. Kovalevskii; E. V. Shatalin. The choice of a regression model of the body weight on the height via an empirical bridge. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 35-47. http://geodesic.mathdoc.fr/item/VTGU_2015_5_a2/

[1] Quetelet A., “Recherches sur le poids de l'homme aux different â ges”, Nouveaux Memoire de l'Academie Royale des Sciences et Belles-Lettres de Bruxelles, 7 (1832), 1–83

[2] Keys A., Fidanza F., Karvonen M. J., Kimura N., Taylor H. L., “Indices of relative weight and obesity”, Journal of Chronic Diseases, 25:6–7 (1972), 329–343 | DOI

[3] Gusarova G. V., Kovalevskiy A. P., Makarenko A. G., “Kriterii nalichiya razladki”, Sib. zhurn. industr. matem., 8:4 (2005), 18–33 (in Russian) | MR

[4] Kovalevskiy A. P., “Statisticheskie kriterii obnaruzheniya razladki regressii s tsiklicheskim trendom”, Nauchnyy vestnik NGTU, 2013, no. 3(52), 55–62 (in Russian) | MR

[5] Kovalevskiy A. P., Shatalin E. V., “Asimptotika summ ostatkov odnoparametricheskoy lineynoy regressii, postroennoy po poryadkovym statistikam”, Teoriya veroyatnostey i ee primeneniya, 59:3 (2014), 452–467 (in Russian) | DOI

[6] Arkashov N. S., Kovalevskiy A. P., “Veroyatnostnaya model' tsen na kvartiry”, Sib. zhurn. industr. matem., 15:2 (2012), 11–20 (in Russian)

[7] Kovalevskii A., “A regression model for prices of second-hand cars”, Applied methods of statistical analysis. Applications in Survival Analysis, Reliability and Quality Control, Novosibirsk, 2013, 124–128

[8] Kovalevskiy A. P., Shakhraman'yan A. M., “Analiz defektov stroitel'nykh konstruktsiy metodom empiricheskogo mosta”, Nauchnyy vestnik NGTU, 56:3 (2014), 171–180 (in Russian)

[9] Gastwirth J. L., “A general definition of the Lorenz curve”, Econometrica, 39 (1971), 1037–1039 | DOI | Zbl

[10] Billingsli P., Skhodimost' veroyatnostnykh mer, Nauka Publ., M., 1977 | MR

[11] Bol'shev L. N., Smirnov N. V., Tablitsy matematicheskoy statistiki, Nauka Publ., M., 1983 | MR

[12] Martynov G. V., Kriterii omega-kvadrat, Nauka Publ., M., 1978 | MR

[13] Stute W., “Nonparametric model checks for regression”, Ann. Statist., 25 (1997), 613–641 | DOI | MR | Zbl

[14] MacNeill I. B., “Limit processes for sequences of partial sums of regression residuals”, Ann. Prob., 6:4 (1978), 695–698 | DOI | MR | Zbl

[15] Bischoff W., “A functional central limit theorem for regression models”, Ann. Stat., 26 (1998), 1398–1410 | DOI | MR | Zbl

[16] Davydov Y., Zitikis R., “Convex rearrangements of random elements”, Fields Institute Communications, 44 (2004), 141–171 | MR | Zbl

[17] Hoeffding W., “On the distribution of the expected values of the order statistics”, Ann. Math. Statist., 24:1 (1953), 93–100 | DOI | MR | Zbl

[18] Goldie C. M., “Convergence theorems for empirical Lorenz curves and their inverses”, Advances in Applied Probability, 9 (1977), 765–791 | DOI | MR | Zbl

[19] Feller V., Vvedenie v teoriyu veroyatnostey i ee prilozheniya, v. 1, Mir Publ., M., 1984 (in Russian)