Optimization methods for solving systems of hydrodynamics nonlinear equations
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 20-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are two approaches to numerical solving steady state problems for the system of Navier–Stokes equations describing the motion of a viscous homogeneous incompressible fluid. One of them, that is most commonly used, is reduced to the solution of the non-stationary problem for the Navier–Stokes equations by an approximate method and obtaining steady solutions in the limit. Another, less popular, method is to construct a system of nonlinear algebraic equations (SNAE) using any approximation of the stationary problem solved; then, the resulting system is solved by iterative methods. Each approach has its advantages and disadvantages. The main advantages of the second approach to the solution of stationary problems are: (1) in the process of convergence of the iterative process, the condition of noncompressibility is satisfied automatically; (2) one can use boundary conditions that are hard to implement in the usual way; (3) the method for solving stationary problems does not depend on the method of replacing the system of equations by a SNAE. Disadvantages of this approach are related to the fact that the iterative solutions of the SNAE for its convergence require restrictions on the nonlinear system operators and the initial approximation, which significantly limits the possibility of using this method for solving stationary problems. The partial approximation method for solving difference problems approximating various stationary problems for the Navier–Stokes equations, based on the minimization of the residual norm minimization by specialized methods, was used earlier and proved to be effective. The possibility of solving difference problems approximating the stationary Navier–Stokes equations, multi-step iterative minimization possessing the properties of the CG method is investigated in this paper using the method of conjugate gradients and multi-step relaxation subgradient method (MSRSM). The abovementioned optimization techniques have significant differences in the implementation and requirements to the accuracy of the one-dimensional descent. The conjugate gradient methods require a high precision search. The feature of relaxation subgradient methods, in particular, the MRSM, is the search of the direction of descent for the current gradient-coordinated minimum in a neighborhood the size of which is determined by the step of minimization. This last remark explains the effectiveness of methods of this class in the rough one-dimensional search. Both the methods have successfully coped with the posed tasks within a reasonable time and high accuracy, which is confirmed by comparing the obtained results with known ones. These results allow us to expand the range of difference methods for solving problems approximating the stationary Navier–Stokes equations, which is particularly important under conditions of minimization of multiextremal functions, where it is often necessary to use several optimization methods.
Keywords: Navier–Stokes equations, optimization method, multistep method of minimization, subgradient method, conjugate gradient method.
@article{VTGU_2015_5_a1,
     author = {Yu. N. Zakharov and V. N. Krutikov and Ya. N. Vershinin},
     title = {Optimization methods for solving systems of hydrodynamics nonlinear equations},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {20--34},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_5_a1/}
}
TY  - JOUR
AU  - Yu. N. Zakharov
AU  - V. N. Krutikov
AU  - Ya. N. Vershinin
TI  - Optimization methods for solving systems of hydrodynamics nonlinear equations
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 20
EP  - 34
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_5_a1/
LA  - ru
ID  - VTGU_2015_5_a1
ER  - 
%0 Journal Article
%A Yu. N. Zakharov
%A V. N. Krutikov
%A Ya. N. Vershinin
%T Optimization methods for solving systems of hydrodynamics nonlinear equations
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 20-34
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2015_5_a1/
%G ru
%F VTGU_2015_5_a1
Yu. N. Zakharov; V. N. Krutikov; Ya. N. Vershinin. Optimization methods for solving systems of hydrodynamics nonlinear equations. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 20-34. http://geodesic.mathdoc.fr/item/VTGU_2015_5_a1/

[1] Zakharov Yu. N., Gradientnye iteratsionnye metody resheniya zadach gidrodinamiki, Nauka Publ., Novosibirsk, 2004, 239 pp. (in Russian)

[2] Zakharov Yu. N., “Ob odnom metode resheniya uravneniy s kraevymi usloviyami na beskonechnosti”, Vychislitel'nye tekhnologii, 2:7 (1993), 56–68 (in Russian) | Zbl

[3] Zakharov Yu. N., “Ob odnom metode resheniya statsionarnoy zadachi obtekaniya”, Vychislitel'nye tekhnologii, 7:3 (2002), 11–17 (in Russian)

[4] Zakharov Yu. N., Geydarov N. A., Shokin Yu. I., “Reshenie statsionarnoy zadachi o techenii vyazkoy zhidkosti v kanale, vyzvannom zadannym perepadom davleniya, pri nalichii vnutrennikh istochnikov”, Vychislitel'nye tekhnologii, 15:5 (2010), 14–23 (in Russian)

[5] Babskiy V. G., Sklovskiy Yu. B., “Primenenie metoda N'yutona–Kantorovicha k raschetu techeniya vyazkoy zhidkosti mezhdu vrashchayushchimisya ekstsentrichnymi tsilindrami”, Tr. IV Vsesoyuznogo seminara po chislennym metodam mekhaniki vyazkoy zhidkosti, VTs SO AN SSSR Publ., Novosibirsk, 1973, 63–67 (in Russian)

[6] Lapko S. A., “Iteratsionnye protsessy realizatsii neyavnykh raznostnykh skhem dlya uravneniy vvyazkoy neszhimaemoy zhidkosti”, Differentsial'nye uravneniya, 30:7 (1994), 1222–1224 (in Russian) | MR

[7] Beam Richard M., Bailey Harry E., “Newton's methods for the Navier–Stokes equations”, Proc. Int. Conf. Comput. Eng. Sci., Comput. Mech.'88: Theory and Appl. (Atlanta, Ga, Apr. 10–14, 1988), v. 2, Berlin, 1988, 51.II.1–51.II.4

[8] Zakharov Yu. N., Tolstykh M. A., “Mnogoparametricheskaya optimizatsiya iteratsionnykh skhem resheniya uravneniy s polinomial'noy nelineynost'yu”, Modelirovanie v mekhanike, 4(21), no. 1, Novosibirsk, 1990, 109–114 (in Russian)

[9] Balaganckii M. Yu., Zakharov Yu. N., Shokin Yu. I., “Comparison of two-and three-dimensional steady flows of a homogeneous viscous incompressible fluid”, Russian Journal of Numerical Analysis and Mathematical Modeling, 24:1 (2009), 1–14 | DOI | MR

[10] Milosevic H., Gaydarov N. A., Zakharov Y. N., “Model of incompressible viscous fluid flow driven by pressure difference in a given channel”, International Journal of Heat and Mass Transfer, 62 (2013), 242–246 | DOI

[11] Geidarov N. A., Zakharov Y. N., Shokin Yi. I., “Solution of the problem of viscous fluid flow with a given pressure differential”, Russian Journal of Numerical Analysis and Mathematical Modeling, 26:1 (2011), 39–48 | MR | Zbl

[12] Zakharov Yu. N., Ivanov K. S., “Ob ispol'zovanii gradientnykh iteratsionnykh metodov pri reshenii nachal'no-kraevykh zadach dlya trekhmernoy sistemy uravneniy Nav'e–Stoksa”, Vychislitel'nye tekhnologii, 16:2 (2011), 55–69 (in Russian) | Zbl

[13] Polyak B. T., Vvedenie v optimizatsiyu, Nauka Publ., M., 1983, 384 pp. (in Russian) | MR

[14] Gill F., Myurrey U., Rayt M., Prakticheskaya optimizatsiya, Mir Publ., M., 1985, 509 pp. (in Russian) | MR

[15] Krutikov V. N., Obuchayushchiesya metody bezuslovnoy optimizatsii i ikh primenenie, Izd-vo Tom. gos. pedagogich. un-ta, Tomsk, 2008, 264 pp. (in Russian)

[16] Krutikov V. N., Petrova T. V., “Relaksatsionnyy metod minimizatsii s rastyazheniem prostranstva v napravlenii subgradienta”, Ekonomika i mat. metody, 39:1 (2003), 33–49 (in Russian)

[17] Krutikov V. N., Gorskaya T. A., “Semeystvo relaksatsionnykh subgradientnykh metodov s dvukhrangovoy korrektsiey matrits metriki”, Ekonomika i mat. metody, 45:4 (2009), 37–80 (in Russian) | MR | Zbl

[18] Shor N. Z., Metody minimizatsii nedifferentsiruemykh funktsiy i ikh prilozheniya, Naukova dumka Publ., Kiev, 1979, 199 pp. (in Russian) | MR

[19] Dem'yanov V. F., Vasil'ev L. V., Nedifferentsiruemaya optimizatsiya, Nauka Publ., M., 1972, 368 pp. (in Russian) | MR

[20] Krutikov V. N., Vershinin Ya. N., “Algoritmy obucheniya na osnove ortogonalizatsii posledovatel'nykh vektorov”, Vestnik KemGU, 2012, no. 2(50), 37–42 (in Russian)

[21] Krutikov V. N., Vershinin Ya. N., “Mnogoshagovyy subgradientnyy metod dlya resheniya negladkikh zadach minimizatsii vysokoy razmernosti”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 3, 5–19 (in Russian) | MR

[22] Krutikov V. N., Vershinin Ya. N., “Cubgradientnyy metod minimizatsii s korrektsiey vektorov spuska na osnove par obuchayushchikh sootnosheniy”, Vestnik KemGU, 1:1(57) (2014), 46–54 (in Russian) | MR

[23] Vershinin Ya. N., Bykov A. A., Krutikov V. N., Meshechkin V. V., “O reshenii subgradientnymi metodami regulyarizovannoy zadachi lineynogo programmirovaniya v sisteme ekologicheskogo monitoringa”, Vestnik KemGU, 1:1(57) (2014), 35–41 (in Russian)

[24] Samarskiy A. A., Nikolaev E. S., Metody resheniya setochnykh uravneniy, Nauka Publ., M., 1978, 601 pp. (in Russian) | MR

[25] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoy fiziki, Nauka Publ., Novosibirsk, 1967, 197 pp. (in Russian)

[26] Patankar S., Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti, Energoatomizdat Publ., M., 1984, 152 pp. (in Russian)

[27] Isakov A. G., “K chislennomu resheniyu zadachi s dvizheniem vyazkoy neszhimaemoy zhidkosti v kubicheskoy kaverne s $\mathrm{Re} = 1000$”, Modelirovanie v mekhanike, 4(21), no. 2 (1990), 64–76 (in Russian) | Zbl

[28] Isaev S. A., Sudakov A. G., Luchko N. N., Sidorovich T. V., Kharchenko V. V., “Chislennoe modelirovanie laminarnogo tsirkulyatsionnogo techeniya v kubicheskoy kaverne s podvizhnoy gran'yu”, IFZh, 75:1 (2002), 49–53 (in Russian) | MR | Zbl

[29] Guermond J.-L., Migeon C., Pineau G., Quartapelle L., “Start-up flows in a three-dimensional rectangular driven cavity of aspect ratio $1:1:2$ at $\mathrm{Re} = 1000$”, J. Fluid Mech., 450 (2002), 169–199 | DOI | MR | Zbl

[30] Belolipetskiy V. M., Kostyuk V. Yu., “Chislennoe issledovanie retsirkulyatsionnykh techeniy v trekhmernoy kaverne”, Zhurnal prikladnoy mekhaniki i tekhnicheskoy fiziki, 1990, no. 1, 100–104 (in Russian)

[31] Kudinov P. I., “Chislennye issledovaniya trekhmernogo techeniya v udlinennoy kaverne s podvizhnoy kryshkoy”, Vychislitel'nye i informatsionnye tekhnologii v nauke, tekhnike i obrazovanii (Ust'-Kamenogorsk, Kazakhstan, 11–14 sentyabrya 2003 goda), IVT SO RAN Publ., Kazakhstan, 2003 (in Russian)

[32] Kudinov P. I., “Chislennoe modelirovanie prostranstvennykh techeniy vyazkoy neszhimaemoy zhidkosti”, Vestnik Dnepropetrovskogo universiteta. Seriya Mekhanika, 1:4 (2001), 89–99 (in Russian)