Normal congruence of paraboloid. Demiquadrics
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 5-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is an important problem to build a family of lines on the paraboloid of rotation with certain properties convenient for metallic mesh tailoring upon designing and manufacturing a parabolic antenna. Namely, the lines of this family should be locally close to geodesic lines to a reasonable extent, and an algorithm relating the line of this family to the natural parameter is also necessary. The first and important step has been made in solving the problem: a class of surfaces whose intersection with the paraboloid generates a class of lines promising for the achievement of the declared goals is revealed. These surfaces are demiquadrics associated in a special way with the normal congruence of the paraboloid.
Mots-clés : paraboloid, antenna, demiquadrics.
Keywords: geodesic line, normal congruence
@article{VTGU_2015_5_a0,
     author = {M. S. Bukhtyak},
     title = {Normal congruence of paraboloid. {Demiquadrics}},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {5--19},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_5_a0/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
TI  - Normal congruence of paraboloid. Demiquadrics
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 5
EP  - 19
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_5_a0/
LA  - ru
ID  - VTGU_2015_5_a0
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%T Normal congruence of paraboloid. Demiquadrics
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 5-19
%N 5
%U http://geodesic.mathdoc.fr/item/VTGU_2015_5_a0/
%G ru
%F VTGU_2015_5_a0
M. S. Bukhtyak. Normal congruence of paraboloid. Demiquadrics. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 5 (2015), pp. 5-19. http://geodesic.mathdoc.fr/item/VTGU_2015_5_a0/

[1] de Ram Zh., Differentsiruemye mnogoobraziya, IL Publ., M., 1956, 250 pp. (in Russian)

[2] Shcherbakov R. N., Kurs affinnoy i proektivnoy differentsial'noy geometrii, Izd-vo Tom. un-ta, Tomsk, 1960, 194 pp. (in Russian) | MR

[3] Shcherbakov R. N., Luchinin A. A., Kratkiy kurs differentsial'noy geometrii, TGU Publ., Tomsk, 1974, 250 pp. (in Russian)

[4] Rashevskiy P. K., Kurs differentsial'noy geometrii, GITTL, M.–L., 1950, 428 pp. (in Russian)

[5] Favar Zh., Kurs lokal'noy differentsial'noy geometrii, IL Publ., M., 1960, 559 pp. (in Russian)

[6] Finikov S. P., Teoriya kongruentsiy, GITTL Publ., M.–L., 1950, 528 pp. (in Russian) | MR

[7] Kovantsov N. I., Teoriya kompleksov, Izd-vo Kiev. un-ta, Kiev, 1963, 292 pp. (in Russian) | MR

[8] Kleyn F., Vysshaya geometriya, Editorial URSS Publ., M., 2004, 400 pp. (in Russian)

[9] Finikov S. P., Teoriya par kongruentsiy, GITTL Publ., M., 1956, 443 pp. (in Russian) | MR

[10] Zeyliger D. N., Kompleksnaya lineychataya geometriya, ONTI GTTI Publ., L.–M., 1934, 195 pp. (in Russian)

[11] Finikov S. P., Proektivno-differentsial'naya geometriya, ONTI NKTP, GTTL, M.–L., 1937, 263 pp. (in Russian)

[12] Kartan E., Rimanova geometriya v ortogonal'nom repere, MGU Publ., M., 1960, 307 pp. (in Russian) | MR

[13] Shvarts L., Analiz, v. 2, Mir Publ., M., 1972, 824 pp. (in Russian)

[14] Bukhtyak M. S., Solomina A. V., “Geometricheskoe modelirovanie raskroya setepolotna dlya osesimmetrichnogo reflektora. Chast' 2”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2015, no. 4(36), 5–14 (in Russian)