On sums of diagonal and invertible formal matrices
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2015), pp. 34-40
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper concerns properties of $k$-good formal matrix rings $K_n$ of order $n$ with rings $R_1, R_2, \dots, R_n$ on the main diagonal and $R_i-R_j$-bimodules $M_{ij}$ on other places. In the ring theory, various matrix rings play an important role. Above all I mean formal matrix rings. Formal matrix rings generalize a notion of matrix ring of order $n$ over a given ring. Every ring with nontrivial idempotents is isomorphic to some formal matrix ring. The endomorphism ring of a decomposable module also is a formal matrix ring. The studies of such rings are quite useful for solving some problems on endomorphism rings of Abelian groups. In this paper I show that every matrix form $K_n$ is the sum of diagonal matrix and invertible matrix. Also I give one condition when $K_n$ is the $k$-good ring.
Keywords:
ring, generalized matrix, $k$-good ring.
Mots-clés : formal matrix
Mots-clés : formal matrix
@article{VTGU_2015_4_a3,
author = {T. D. Norbosambuev},
title = {On sums of diagonal and invertible formal matrices},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {34--40},
publisher = {mathdoc},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2015_4_a3/}
}
T. D. Norbosambuev. On sums of diagonal and invertible formal matrices. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2015), pp. 34-40. http://geodesic.mathdoc.fr/item/VTGU_2015_4_a3/