On sums of diagonal and invertible formal matrices
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2015), pp. 34-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper concerns properties of $k$-good formal matrix rings $K_n$ of order $n$ with rings $R_1, R_2, \dots, R_n$ on the main diagonal and $R_i-R_j$-bimodules $M_{ij}$ on other places. In the ring theory, various matrix rings play an important role. Above all I mean formal matrix rings. Formal matrix rings generalize a notion of matrix ring of order $n$ over a given ring. Every ring with nontrivial idempotents is isomorphic to some formal matrix ring. The endomorphism ring of a decomposable module also is a formal matrix ring. The studies of such rings are quite useful for solving some problems on endomorphism rings of Abelian groups. In this paper I show that every matrix form $K_n$ is the sum of diagonal matrix and invertible matrix. Also I give one condition when $K_n$ is the $k$-good ring.
Keywords: ring, generalized matrix, $k$-good ring.
Mots-clés : formal matrix
@article{VTGU_2015_4_a3,
     author = {T. D. Norbosambuev},
     title = {On sums of diagonal and invertible formal matrices},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {34--40},
     year = {2015},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_4_a3/}
}
TY  - JOUR
AU  - T. D. Norbosambuev
TI  - On sums of diagonal and invertible formal matrices
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 34
EP  - 40
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_4_a3/
LA  - ru
ID  - VTGU_2015_4_a3
ER  - 
%0 Journal Article
%A T. D. Norbosambuev
%T On sums of diagonal and invertible formal matrices
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 34-40
%N 4
%U http://geodesic.mathdoc.fr/item/VTGU_2015_4_a3/
%G ru
%F VTGU_2015_4_a3
T. D. Norbosambuev. On sums of diagonal and invertible formal matrices. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2015), pp. 34-40. http://geodesic.mathdoc.fr/item/VTGU_2015_4_a3/

[1] Krylov P. A., Tuganbaev A. A., “Moduli nad kol'tsami formal'nykh matrits”, Fundamental'naya i prikladnaya matematika, 15:8 (2009), 145–211 (in Russian)

[2] Krylov P. A., “O gruppe $K_0$ kol'tsa obobshchennykh matrits”, Algebra i logika, 52:3 (2013), 370–385 (in Russian) | MR | Zbl

[3] Tang G., Zhou Y., “A class of formal matrix rings”, Linear Algebra and Appl., 428 (2013), 4672–4688 | DOI | MR

[4] Wolfson K. G., “An ideal theoretic characterization of the ring of all linear transformations”, Amer. J. Math., 75 (1953), 358–386 | DOI | MR | Zbl

[5] Zelinsky D., “Every linear transformation is a sum of non-singular ones”, Proc. Amer. Math. Soc., 5 (1954), 627–630 | DOI | MR | Zbl

[6] Skornyakov L., Complemented modular lattices and regular rings, Oliver Boyd, London, 1958, 182 pp. | MR

[7] Raphael R. M., “Rings which are generated by their units”, J. Algebra, 28 (1974), 199–204 | DOI | MR

[8] Fuchs L., “Recent results and problems on Abelian groups”, Topics in Abelian groups, Proc. Sympos. (New Mexico State University, 1962), Scott Foresman and Co., Chicago, 1963, 9–40 | MR

[9] Stringall R. W., “Endomorphism rings of Abelian groups generated by automorphism groups”, Acta Math. Acad. Sci. Hungar., 18 (1967), 401–404 | DOI | MR | Zbl

[10] Freedman H., “On endomorphisms of primary Abelian groups”, J. London Math. Soc., 43 (1968), 305–307 | DOI | MR | Zbl

[11] Hill P., “Endomorphism ring generated by units”, Trans. Amer. Math. Soc., 141 (1969), 99–105 | DOI | MR | Zbl

[12] Castagna F., “Sums of automorphisms of a primary Abelian group”, Pacific J. Math., 27 (1968), 463–473 | DOI | MR | Zbl

[13] Henriksen M., “Two classes of rings generated by their units”, J. Algebra, 31 (1974), 182–193 | DOI | MR | Zbl

[14] Vamos P., “2-good rings”, Quart. J. Math., 56 (2005), 417–430 | DOI | MR | Zbl

[15] Srivastava A. K., “A survey of rings generated by units”, Annales de la Faculte des Sciences de Toulouse Mathatiques, 19 (2010), 203–213 | DOI | MR | Zbl