On classification of spaces of continuous $S^1$-valued functions on polihydrons
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2015), pp. 15-20

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the spaces of continuous $S^1$-valued functions $C_p(X,S^1)$ are considered. It is proved that if $X$ is a $n$-dimensional polihydron and $S^1$ is a circle which is considered as a topological group, then the topological group $C_p(X,S^1)$ is topologically isomorphic to $C_p(\Delta_n,S^1)$, where $\Delta_n$ is an $n$-dimensional simplex, $n\geqslant1$.
Keywords: almost ring, topological almost module, continuous homomorphism, space of continuous functions
Mots-clés : polihydron, isomorphism.
@article{VTGU_2015_4_a1,
     author = {S. P. Gulko and A. V. Titova},
     title = {On classification of spaces of continuous $S^1$-valued functions on polihydrons},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {15--20},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_4_a1/}
}
TY  - JOUR
AU  - S. P. Gulko
AU  - A. V. Titova
TI  - On classification of spaces of continuous $S^1$-valued functions on polihydrons
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 15
EP  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_4_a1/
LA  - ru
ID  - VTGU_2015_4_a1
ER  - 
%0 Journal Article
%A S. P. Gulko
%A A. V. Titova
%T On classification of spaces of continuous $S^1$-valued functions on polihydrons
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 15-20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VTGU_2015_4_a1/
%G ru
%F VTGU_2015_4_a1
S. P. Gulko; A. V. Titova. On classification of spaces of continuous $S^1$-valued functions on polihydrons. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 4 (2015), pp. 15-20. http://geodesic.mathdoc.fr/item/VTGU_2015_4_a1/