On mechanisms of the hydrate shell growth on the surface of supernatant gas bubbles
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 73-86 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theoretical model of the methane bubble migration under conditions of the hydrate development in an upward flow of water in a vertical pipe is proposed and constructed. We consider two limiting mechanisms that determine the hydrate development kinetics in the process of gas bubble floating-up. If the hydrate development intensity is determined by the heat removal from the bubble surface by a liquid, the height at which the hydrate formation process terminates amounts to fractions of meters; in the case where the process is limited by gas diffusion through the hydrated peel, tens of meters. The critical mass flow rates of gas and water needed to complete the process of hydrate formation have been obtained. It is found that the migration of gas bubbles in the reactor is accompanied by two possible modes of the hydrate development depending on the initial mass flow rate of water: gas bubbles go over into the hydrated state either completely as separate inclusions or partially with the formation of bubbles with a hydrate shell. The influence of the initial mass flow of water on the dynamics of the hydrate formation process is analyzed at different values of hydrostatic pressure (or gas source operation depths).
Keywords: hydrate shell, water, gas, tubular reactor, heat removal
Mots-clés : diffusion.
@article{VTGU_2015_3_a9,
     author = {V. Sh. Shagapov and A. S. Chiglintseva and A. A. Rusinov},
     title = {On mechanisms of the hydrate shell growth on the surface of supernatant gas bubbles},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {73--86},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_3_a9/}
}
TY  - JOUR
AU  - V. Sh. Shagapov
AU  - A. S. Chiglintseva
AU  - A. A. Rusinov
TI  - On mechanisms of the hydrate shell growth on the surface of supernatant gas bubbles
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 73
EP  - 86
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_3_a9/
LA  - ru
ID  - VTGU_2015_3_a9
ER  - 
%0 Journal Article
%A V. Sh. Shagapov
%A A. S. Chiglintseva
%A A. A. Rusinov
%T On mechanisms of the hydrate shell growth on the surface of supernatant gas bubbles
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 73-86
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2015_3_a9/
%G ru
%F VTGU_2015_3_a9
V. Sh. Shagapov; A. S. Chiglintseva; A. A. Rusinov. On mechanisms of the hydrate shell growth on the surface of supernatant gas bubbles. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 73-86. http://geodesic.mathdoc.fr/item/VTGU_2015_3_a9/

[1] Sauter E. J. et al., “Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles”, Earth and Planetary Science Letters, 243:3–4 (2006), 354

[2] Maksimov A. O., Sosedko E. V., “Dynamics of sea bubbles covered by a hydrate skin”, XVI Session of the Russian Acoustical Society (Moscow, November 14–18, 2005), 459

[3] Haeckel M. et al., “Rising methane gas bubbles form massive hydrate layers at the seafloor”, Geochimica et Cosmochimica Acta, 68:21 (2004), 4335

[4] Egorov A. V., Nigmatulin R. I., Rozhkov A. N., Perekhod glubokovodnykh metanovykh puzyrey v tverdye gidratnye formy, Preprint IPMekh RAN No 1038, 2013 (in Russian)

[5] Greinert J. et al., “1300-m-high rising bubbles from mud volcanoes at 2080m in the Black Sea: Hydroacoustic characteristics and temporal variability”, Earth and Planetary Science Letters, 244 (2006), 1

[6] Römer M. et al., “Geological control and magnitude of methane ebullition from a high-flux seep area in the Black Sea — the Kerch seep area”, Marine Geology, 319–322 (2012), 57

[7] Römer M. et al., “The role of gas bubble emissions at deep-water cold seep systems: an example from the Makran continental margin, offshore Pakistan”, Proceedings of the 7th International Conference on Gas Hydrates, ICGH 2011 (Edinburgh, Scotland, United Kingdom, July 17–21, 2011)

[8] Skarke A. et al., “Widespread methane leakage from the sea floor on the northern US Atlantic margin”, Nature Geoscience, 7, September (2014), 657 | DOI

[9] Gentz T. et al., “A water column study of methane around gas flares located at the West Spitsbergen continental margin”, Continental Shelf Research, 72 (2014), 107

[10] Rehder G. et al., “Enhanced lifetime of methane bubble streams within the deep ocean”, Geophysical Research Letters, 29 (2002), 21

[11] Smith A. J. et al., “Thermogenic methane injection via bubble transport into the upper Arctic Ocean from the hydrate-charged Vestnesa Ridge, Svalbard”, Geochemistry, Geophysics, Geosystems, 15:5, May (2014), 1945

[12] McGinnis D. F. et al., Fate of rising methane bubbles in stratified waters: How much methane reaches the atmosphere?, Journal of Geophysical Research, 111 (2006), 382

[13] Vlasov V. A., “Phenomenological diffusion theory of formation of gas hydrate from ice powder”, Theor. Found. Chem. Eng., 46:6 (2012), 576

[14] Istomin V. A., Yakushev V. S., Gazovye gidraty v prirodnykh usloviyakh, Nedra Publ., M., 1992 (in Russian)

[15] Mel'nikov V. P., Nesterov A. N., “Primenenie PAV v tekhnologiyakh transporta i khraneniya prirodnogo gaza v forme gazogidratov”, Fundamental'nye problemy razrabotki neftegazovykh mestorozhdeniy, dobychi i transportirovki uglevodorodnogo syr'ya, Materialy Mezhdunar. konf. (2004), 98 (in Russian)

[16] Nesterov A. N., “Primenenie poverkhnostno-aktivnykh veshchestv dlya intensifikatsii protsessov obrazovaniya gidratov v tekhnologiyakh transporta i khraneniya gaza”, Sovremennoe sostoyanie gazogidratnykh issledovaniy v mire i prakticheskie rezul'taty dlya gazovoy promyshlennosti, OOO IRTs Gazprom Publ., M., 2004, 66 (in Russian)

[17] Shagapov V. Sh., Tazetdinov B. I., Nurislamov O. R., “K teorii obrazovaniya i razlozheniya gazogidratnykh chastits v protsesse ikh vsplytiya v vode”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2013, no. 6(26), 106–113 (in Russian)

[18] Gumerov N. A., Chahine G. L., “Dynamics of bubbles in conditions of gas hydrate formation”, Fluid Dynamics, 1992, no. 5, 664 | Zbl

[19] Zheng L., Yapa P. D., “A model for simulating deepwater oil and gas blowouts. I: Theory and model formulation”, Journal of Hydraulic Research, 41:4 (2002), 339

[20] Gumerov N. A., “Avtomodel'nyy rost sloya gazovogo gidrata, razdelyayushchego gaz i zhidkost'”, Mekhanika zhidkosti i gaza, 1992, no. 5, 78 (in Russian) | Zbl

[21] Makogon Yu. F., Gidraty prirodnykh gazov, Nedra Publ., M., 1974 (in Russian)

[22] Luoa Y.-T. et al., “Study on the kinetics of hydrate formation in a bubble column”, Chemical Engineering Science, 62 (2007), 1000

[23] Nigmatulin R. I., Dinamika mnogofaznykh sred, v. 1, Nauka Publ., M., 1987, 464 pp. (in Russian)

[24] Kutepov A. M., Polyanin A. D., Zapryanov Z. D., Vyaz'min A. V., Kazenin D. A., Khimicheskaya gidrodinamika, Spravochnoe posobie, Kvantum Publ., M., 1996 (in Russian)

[25] Shagapov V. Sh., Chiglintseva A. S., Kunsbaeva G. A., “Theoretical modeling of a reactor for washing gas out of hydrates”, Theor. Found. Chem. Eng., 47:2 (2013), 159