The group velocity of a wave packet formed by two free identical particles with different non-relativistic velocities
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 69-72 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two theorems relating the group velocity of a wave packet formed by two identical free particles with different non-relativistic velocities with the parameters of harmonics are proved.
Keywords: angular frequency, wave number, phase velocity.
Mots-clés : Planck's constant
@article{VTGU_2015_3_a8,
     author = {I. P. Popov},
     title = {The group velocity of a wave packet formed by two free identical particles with different non-relativistic velocities},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {69--72},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_3_a8/}
}
TY  - JOUR
AU  - I. P. Popov
TI  - The group velocity of a wave packet formed by two free identical particles with different non-relativistic velocities
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 69
EP  - 72
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_3_a8/
LA  - ru
ID  - VTGU_2015_3_a8
ER  - 
%0 Journal Article
%A I. P. Popov
%T The group velocity of a wave packet formed by two free identical particles with different non-relativistic velocities
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 69-72
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2015_3_a8/
%G ru
%F VTGU_2015_3_a8
I. P. Popov. The group velocity of a wave packet formed by two free identical particles with different non-relativistic velocities. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 69-72. http://geodesic.mathdoc.fr/item/VTGU_2015_3_a8/

[1] Lakaev S. N., Alladustov Sh. U., “Polozhitel'nost' sobstvennykh znacheniy dvukhchastichnogo operatora Shredingera na reshetke”, Teoreticheskaya i matematicheskaya fizika, 178:3 (2014), 390–402 (in Russian) | Zbl

[2] Butlitskiy M. A., Zelener B. B., Zelener B. V., Manykin E. A., “Dvukhchastichnaya matritsa plotnosti i psevdopotentsial elektron-protonnogo vzaimodeystviya dlya ul'tranizkikh temperatur”, Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki, 48:1 (2008), 154–158 (in Russian) | MR | Zbl

[3] Khrennikov A. Yu., “Integral'naya interpretatsiya dvukhchastichnoy volnovoy funktsii i predstavlenie kvantovykh korrelyatsiy s pomoshch'yu sluchaynykh poley”, Teoreticheskaya i matematicheskaya fizika, 164:3 (2010), 386–393 (in Russian) | Zbl

[4] Blokhintsev D. I., Osnovy kvantovoy mekhaniki, Nauka Publ., M., 1976, 664 pp. (in Russian)

[5] Feynman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir Publ., M., 1968, 384 pp. (in Russian)

[6] Sivukhin D. V., Obshchiy kurs fiziki, v. 4, Optika, Nauka Publ., M., 1980, 752 pp. (in Russian)

[7] Popov I. P., “Ob odnom proyavlenii inertnosti”, Estestvennye i tekhnicheskie nauki, 2013, no. 1(63), 23–24 (in Russian)

[8] Popov I. P., “O vliyanii inertnosti chastitsy na ee volnovoe predstavlenie”, Vestnik Zabaykal'skogo gosudarstvennogo universiteta, 2013, no. 04(95), 90–94 (in Russian)

[9] Popov I. P., “O volnovoy energii inertnoy chastitsy”, Zaural'skiy nauchnyy vestnik, 2013, no. 1(3), 60–61 (in Russian)