On numerical simulation of the fluid flow in a dual-completion water-bearing system
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 52-59 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The motion of an incompressible fluid in a one-dimensional water-bearing stratum is considered in the presence of a pressure communication with the underlying stratum. The hydraulic pressure head in the lower stratum is considered to be unknown. The question of modeling the process is reduced to solving the inverse problem of reconstructing the right-hand side of differential equations of the fluid motion. A finite-difference analog of the inverse problem is constructed and a computational algorithm for solving the resulting system of finite-difference equations is proposed.
Keywords: water-bearing stratum, pressure communication, inverse problem of reconstructing the right-hand side, finite-difference method.
@article{VTGU_2015_3_a6,
     author = {Kh. M. Gamzaev},
     title = {On numerical simulation of the fluid flow in a dual-completion water-bearing system},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {52--59},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_3_a6/}
}
TY  - JOUR
AU  - Kh. M. Gamzaev
TI  - On numerical simulation of the fluid flow in a dual-completion water-bearing system
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 52
EP  - 59
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_3_a6/
LA  - ru
ID  - VTGU_2015_3_a6
ER  - 
%0 Journal Article
%A Kh. M. Gamzaev
%T On numerical simulation of the fluid flow in a dual-completion water-bearing system
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 52-59
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2015_3_a6/
%G ru
%F VTGU_2015_3_a6
Kh. M. Gamzaev. On numerical simulation of the fluid flow in a dual-completion water-bearing system. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 52-59. http://geodesic.mathdoc.fr/item/VTGU_2015_3_a6/

[1] Polubarinova-Kochina P. Ya., Teoriya dvizheniya gruntovykh vod, Nauka Publ., M., 1977, in Russian pp. | MR

[2] Verigin N. N. et al., Gidrodinamicheskie i fiziko-khimicheskie svoystva gornykh porod, Nedra Publ., M., 1977 (in Russian)

[3] Bondarenko N. F., Fizika dvizheniya podzemnykh vod, Nedra Publ., M., 1973 (in Russian)

[4] Samarskiy A. A., Vabishchevich P. N., Chislennye metody resheniya obratnykh zadach matematicheskoy fiziki, Izdatel'stvo LKI, M., 2009 (in Russian)

[5] Gamzaev Kh. M., “Chislennyy metod resheniya obratnoy zadachi porshnevogo vytesneniya nefti iz plasta vodoy”, Inzhenerno-fizicheskiy zhurnal, 85:5 (2012), 925–930 (in Russian)

[6] Gamzaev Kh. M., “Chislennyy metod resheniya obratnoy zadachi uprugovodonapornogo rezhima razrabotki neftyanogo plasta”, Vychislitel'naya mekhanika sploshnykh sred, 5:4 (2012), 392–396 (in Russian)