Mots-clés : solution, elliptic type equation
@article{VTGU_2015_3_a3,
author = {D. A. Tursunov and U. Z. Erkebaev},
title = {Asymptotic expansion of the solution of a perturbed elliptic equation when the limit equation has singular points},
journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
pages = {26--34},
year = {2015},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VTGU_2015_3_a3/}
}
TY - JOUR AU - D. A. Tursunov AU - U. Z. Erkebaev TI - Asymptotic expansion of the solution of a perturbed elliptic equation when the limit equation has singular points JO - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika PY - 2015 SP - 26 EP - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/VTGU_2015_3_a3/ LA - ru ID - VTGU_2015_3_a3 ER -
%0 Journal Article %A D. A. Tursunov %A U. Z. Erkebaev %T Asymptotic expansion of the solution of a perturbed elliptic equation when the limit equation has singular points %J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika %D 2015 %P 26-34 %N 3 %U http://geodesic.mathdoc.fr/item/VTGU_2015_3_a3/ %G ru %F VTGU_2015_3_a3
D. A. Tursunov; U. Z. Erkebaev. Asymptotic expansion of the solution of a perturbed elliptic equation when the limit equation has singular points. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 26-34. http://geodesic.mathdoc.fr/item/VTGU_2015_3_a3/
[1] Il'in A. M., Soglasovanie asimptoticheskikh razlozheniy kraevykh zadach, Nauka Publ., M., 1989, 334 pp. (in Russian)
[2] Alymkulov K., “Analog of method of boundary layer function for the solution of the Lighthill's model equation with the regular singular point”, American Journal Math. Statistics, 3:1 (2013), 53–61
[3] Alymkulov K., Asylbekov T. D., Dolbeeva S. F., “Obobshchenie metoda pogranfunktsiy dlya resheniya kraevoy zadachi dlya bisingulyarno vozmushchennogo differentsial'nogo uravneniya vtorogo poryadka”, Matematicheskie zametki, 94:4 (2013), 484–487 (in Russian)
[4] Tursunov D. A., “Asimptoticheskoe razlozhenie resheniya bisingulyarno vozmushchennogo ellipticheskogo uravneniya. Vestnik Tomskogo gosudarstvennogo universiteta”, Matematika i mekhanika, 2013, no. 6(26), 37–44 (in Russian)
[5] Tursunov D. A., “Asimptotika resheniya bisingulyarno vozmushchennogo ellipticheskogo uravneniya. Cluchay osoboy tochki na granitse”, Izvestiya Tomskogo politekhnicheskogo universiteta, 324:2 (2014), 31–35 (in Russian)
[6] Polyanin A. D., Spravochnik po lineynym uravneniyam matematicheskoy fiziki, Fizmatlit Publ., M., 2001, 576 pp. (in Russian)