Mathematical modeling of complex technical objects with nonlinear properties illustrated by the investigation of porous media reactor reliability
Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 87-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the approach to solving coupled thermomechanical problems for investigation of stresses, strains and crack resistance of high-temperature porous media combustion reactors and others energy setups. A coupled physical-mathematical model for definition of strains, stresses and temperatures in porous media reactors is formulated. In this paper, the three-dimensional simulation of technological process and reliability of a methane conversion reactor in filtrating mode is carried out. Thermal contours of the reaction region and structural elements of the reactor unit are obtained for different thicknesses of combustion zone lining. Structural elements of the reactor have a complex strain-stress state under normal operation conditions. Stress concentrators are detected near geometrical and thermal gradients. Results of numerical solution of coupled thermomechanical problems and calculation of structural elements strength where thermal contours were determined on the basis of analytical thermal calculations were analyzed. The comparison of the calculated strain-stress states shows that the maximum equivalent stress may differ to 30 % for considered methods. In the numerical solution of coupled problems, predicted stresses are distributed according to local changes of the heat transfer coefficient due to the effects of turbulence and non-uniformity of the hot gas velocity field. The considered approach to solving coupled thermomechanical problems can be used for analyzing strain-stress states and crack resistance of energy setups. The influence of the parameters of high-temperature gas flow and modes of device operation on the stress level can be taken into account.
Keywords: energy and oil-gas setups, porous media combustion reactors, computer-aided engineering, simulation of setups operation, strength analysis, coupled problems.
@article{VTGU_2015_3_a10,
     author = {I. A. Yakovlev and V. A. Skripnyak},
     title = {Mathematical modeling of complex technical objects with nonlinear properties illustrated by the investigation of porous media reactor reliability},
     journal = {Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika},
     pages = {87--106},
     year = {2015},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VTGU_2015_3_a10/}
}
TY  - JOUR
AU  - I. A. Yakovlev
AU  - V. A. Skripnyak
TI  - Mathematical modeling of complex technical objects with nonlinear properties illustrated by the investigation of porous media reactor reliability
JO  - Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
PY  - 2015
SP  - 87
EP  - 106
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VTGU_2015_3_a10/
LA  - ru
ID  - VTGU_2015_3_a10
ER  - 
%0 Journal Article
%A I. A. Yakovlev
%A V. A. Skripnyak
%T Mathematical modeling of complex technical objects with nonlinear properties illustrated by the investigation of porous media reactor reliability
%J Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika
%D 2015
%P 87-106
%N 3
%U http://geodesic.mathdoc.fr/item/VTGU_2015_3_a10/
%G ru
%F VTGU_2015_3_a10
I. A. Yakovlev; V. A. Skripnyak. Mathematical modeling of complex technical objects with nonlinear properties illustrated by the investigation of porous media reactor reliability. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika, no. 3 (2015), pp. 87-106. http://geodesic.mathdoc.fr/item/VTGU_2015_3_a10/

[1] Kovenya V. M., “Nekotorye tendentsii razvitiya matematicheskogo modelirovaniya”, Vychislitel'nye tekhnologii, 7:2 (2002), 59–73 (in Russian) | MR | Zbl

[2] Slesarenko A. P., Kobrinovich Yu. O., Marchenko A. A., “Matematicheskoe modelirovanie teplovykh protsessov v prostranstvennykh konstruktsiyakh energeticheskikh ustroystv”, Vostochno-evropeyskiy zhurnal peredovykh tekhnologiy, 5:4 (2012), 4–9 (in Russian)

[3] Kuznetsov G. V., Sandu S. F., “Matematicheskoe modelirovanie raboty vysokotemperaturnykh teplovykh trub v teploperedayushchikh ustroystvakh sovremennykh energeticheskikh ustanovok”, Izvestiya vuzov. Yadernaya energetika, 2004, no. 2, 102–109 (in Russian)

[4] A. da Roza, Vozobnovlyaemye istochniki energii: fiziko-tekhnicheskie osnovy, Uchebnoe posobie, MEI Publ., Dolgoprudnyy; Intellekt Publ., M., 2010, 704 pp. (in Russian)

[5] Sosudy i apparaty. Normy i metody rascheta na prochnost'. Obshchie trebovaniya, GOST R 52857.1-2007, Standartinform Publ., M., 2008, 24 pp. (in Russian)

[6] Sosudy i apparaty stal'nye svarnye. Obshchie tekhnicheskie usloviya, GOST R 52630-2012, Standartinform Publ., M., 2013, 83 pp. (in Russian)

[7] Danilov A. M., Gar'kina I. A., “Matematicheskoe modelirovanie slozhnykh sistem: sostoyanie, perspektivy, primer realizatsii”, Vestnik grazhdanskikh inzhenerov, 2012, no. 2, 333–337 (in Russian)

[8] Kuznetsov G. V., Kraynov A. Yu., Korshunov A. V., “Sopryazhennyy teploperenos i gidrodinamika pri dvizhenii vyazkoy neszhimaemoy neizotermicheskoy zhidkosti v otkrytoy polosti s uchetom okhlazhdeniya vneshnego kontura”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, no. 4(12), 102–108 (in Russian) | Zbl

[9] Hokyu Moona, Kyung Min Kimb, Yun Heung Jeonc, Sangwoo Shina, Jun Su Parka, Hyung Hee Cho, “Effect of thermal stress on creep lifetime for a gas turbine combustion liner”, Engineering Failure Analysis, 47A (2015), 34–40

[10] Krektuleva R. A., Cherepanov O. I., Cherepanov R. O., “Chislennoe reshenie kvazistaticheskoy zadachi rascheta ostatochnykh napryazheniy v svarnykh shvakh s uchetom fazovykh prevrashcheniy”, Fizicheskaya mezomekhanika, 16:6 (2013), 51–57 (in Russian)

[11] Leonov V. P., Mizetskiy A. V., “Vliyanie lokal'nykh ostatochnykh svarochnykh napryazheniy na nachal'nuyu stadiyu razvitiya treshchin v svarnykh soedineniyakh”, Voprosy materialovedeniya, 2008, no. 4, 54–65 (in Russian)

[12] Loytsyanskiy L. G., Mekhanika zhidkosti i gaza, Ucheb. dlya vuzov, Drofa Publ., M., 2003, 840 pp. (in Russian) | MR

[13] Frik P. G., Turbulentnost': modeli i podkhody, Kurs lektsiy, v. I, Perm St. Tech. Univ. Publ., Perm', 1998, 108 pp. (in Russian)

[14] Dobrego K. V., Gnezdilov N. N., Lee S. H., Choi H. K., “Partial oxidation of methane in a reverse flow porous media reactor”, Int. J. Hydrogen Energy, 33 (2008), 5535–5544

[15] Yakovlev I. A., Zambalov S. D., Skripnyak V. A., “Matematicheskoe modelirovanie protsessa polucheniya sintez-gaza v reaktore fil'tratsionnogo goreniya pri povyshennykh davleniyakh”, Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2014, no. 6(32), 103–120 (in Russian) | MR

[16] Meyz Dzh., Teoriya i zadachi mekhaniki sploshnykh sred, Mir Publ., M., 1974, 310 pp. (in Russian)

[17] Astaf'ev V. I., Radaev Yu. N., Stepanova L. V., Nelineynaya mekhanika razrusheniya, Uchebnoe posobie, Samara St. Univ. Publ., Samara, 2001, 562 pp. (in Russian)

[18] Siratori M., Miesi T., Matsusita Kh., Vychislitel'naya mekhanika razrusheniya, Mir Publ., M., 1986, 334 pp. (in Russian)

[19] Hongjun Yu, Linzhi Wu, Licheng Guo, Huaping Wu, Shanyi Du, “An interaction integral method for 3D curved cracks in nonhomogeneous materials with complex interfaces”, International Journal of Solids and Structures, 47 (2010), 2178–2189 | Zbl

[20] Klovanich S. F., Metod konechnykh elementov v nelineynykh zadachakh inzhenernoy mekhaniki, OOO «IPO Zaporozh'e» Publ., Zaporozh'e, 2009, 400 pp. (in Russian)

[21] Royak M. E. et al., Setochnye metody resheniya kraevykh zadach matematicheskoy fiziki, NGTU Publ., Novosibirsk, 1998, 120 pp. (in Russian)

[22] Vogel J. C., Eaton J. K., “Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step”, Journal of Heat Transfer, 107 (1985), 922–929

[23] Timoshenko S., Strength of Materials, v. I, Elementary Theory and Problems, D. Van Nostrand Company, N.Y., 1955, 234 pp.

[24] Murakami Yu. (ed.), Spravochnik po koeffitsientam intensivnosti napryazheniy, v. 1, Mir Publ., M., 1990, 448 pp. (in Russian)

[25] Tymchak V. M., Gusovskiy V. L., Raschet nagrevatel'nykh i termicheskikh pechey, Sprav. izd., Metallurgiya Publ., M., 1983, 480 pp. (in Russian)

[26] Nashchokin V. V., Tekhnicheskaya termodinamika i teploperedacha, Uchebnik, Vysshaya shkola Publ., M., 1975, 497 pp. (in Russian)

[27] Moskvichev V. V., Makhutov N. A., Chernyaev A. P. et al., Treshchinostoykost' i mekhanicheskie svoystva konstruktsionnykh materialov, Nauka Publ., Novosibirsk, 2002, 334 pp. (in Russian)

[28] Begley J. R., Landes J. D., “The J-integral as a fracture criterion”, Fracture analysis, ASTM STP, 514, 1972, 1–20